LESSON PLAN

Name of the Faculty : Gaurav Raghav

Discipline Mechanical engineering 4th

Semester

Subject Machine design and drawing

Lesson Plan duration : 15 weeks (from January , 2018 to April , 2018)

Work load (Lecture/ Practical) per week (in hours) : Lecture -02 practical-06

WEEK		THEORY		PRACTICAL	
WEEK	Lecture day	Topic (including assignment and test)	Practical Day	Торіс	
		1.1 Design – Definition, Type of design, necessity		1.1 Design – Definition, Type of	
	1	of design	1	design, necessity of design	
		1.1.1 Comparison of designed and undesigned		1.1.1 Comparison of designed and	
1		work		undesigned work	
	3	1.1.2 Design procedure	3	1.1.2 Design procedure	
2	4	1.1.3 Characteristics of a good designer	4	1.1.3 Characteristics of a good designer	
		1.2 Design terminology: stress, strain, factor of		1.2 Design terminology: stress, strain,	
	5	safety, factors affecting factor	5	factor of safety, factors affecting factor	
		of safety, stress concentration, methods to reduce		of safety, stress concentration, methods	
		stress concentration,		to reduce stress concentration.	
3	6		6		
		fatigue, endurance limit. 1.2.1 General design		fatigue, endurance limit. 1.2.1 General	
	7	consideration	7	design consideration	
		1.2.2. Codes and Standards (BIS standards)		1.2.2. Codes and Standards (BIS	
4	8		8	standards)	
		1.3 Engineering materials and their mechanical		1.3 Engineering materials and their	
	9	properties :	9	mechanical properties :	
		1.3.1 Properties of engineering materials:		1.3.1 Properties of engineering	
_		elasticity, plasticity, malleability,		materials: elasticity, plasticity,	
5	10		10	malleability,	
	11	tenacity, strength ductility, toughness, hardness		tenacity, strength ductility, toughness,	
	11	and resilience. Fatigue, creep	11	hardness and resilience. Fatigue, creep	
6	10	1.3.2 Selection of materials, criterion of material selection	10	1.3.2 Selection of materials, criterion of material selection	
0	12	2.1 Various design failures-maximum stress	12	2.1 Various design failures-maximum	
	12	theory, maximum strain theory,	12	stress theory, maximum strain theory,	
7		maximum strain energy theory		maximum strain energy theory	
,		2.2 Classification of loads		2.2 Classification of loads	
	15	2.3 Design under tensile, compressive and	15		
8	16	torsional loads.	16	2.3 Design under tensile, compressive and torsional loads.	
	10	3.1 Type of shaft, shaft materials, Type of loading	10	3.1 Type of shaft, shaft materials, Type	
	17	on shaft, standard sizes of	17	of loading on shaft, standard sizes of	
9		shaft available		shaft available	
				3.2 Shaft subjected to torsion only,	
		3.2 Shaft subjected to torsion only, determination		determination of shaft diameter (hollow	
	19	of shaft diameter (hollow and	19	and	
10	-	solid shaft) on the basis of :		solid shaft) on the basis of :	
		3.3 Determination of shaft dia (hollow and solid		3.3 Determination of shaft dia (hollow	
	21	shaft) subjected to bending	21	and solid shaft) subjected to bending	
				3.4 Determination of shaft dia (hollow	
		3.4 Determination of shaft dia (hollow and solid		and solid shaft) subjected to combined	
11	22	shaft) subjected to combined torsion and bending .	22	torsion and bending.	
L				0 ·	

		4.1 Types of key, materials of key, functions of key	23	4.1 Types of key, materials of key, functions of key
12	24	4.2 Failure of key (by Shearing and Crushing).	24	4.2 Failure of key (by Shearing and Crushing).
		4.3 Design of key (Determination of key dimension)	25	4.3 Design of key (Determination of key dimension)
13		4.4 Effect of keyway on shaft strength. (Figures and problems).	26	4.4 Effect of keyway on shaft strength. (Figures and problems).
		5.1 Introduction, Advantages and Disadvantages of screw joints, location of	27	5.1 Introduction, Advantages and Disadvantages of screw joints, location of
14		5.3 Initial stresses due to screw up forces, stresses due to combined forces	28	5.3 Initial stresses due to screw up forces, stresses due to combined forces
		5.4 Design of power screws (Press, screw jack, screw clamp)	29	5.4 Design of power screws (Press, screw jack, screw clamp)
15	30	Types of cams and followers (theoretical)	30	Types of cams and followers (theoretical)