

E-content

of

MICROCONTROLLERS

1. Microcontroller series (MCS) – 51 Overview (16 Periods)

1.1. Architecture of 8051Microcontroller

1.2. Pin details

1.3. I/O Port structure

1.4. Memory Organization

1.5. Special Function Registers (SFRs)

1.6. External Memory

2. Instruction Set (20 Periods)

2.1. Instruction Set of 8051

2.2. Addressing Modes,

2.3. Types of Instructions

2.4. Timer operation

2.5. Serial Port operation

2.6. Interrupts

3. Assembly/C programming for Micro controller (12 Periods)

3.1. Assembler directives

3.2. Assembler operation

3.3. Compiler operations

3.4. De bugger

4. Design and Interface (12 Periods)

4.1. Keypad interface

4.2. 7- segment interface

4.3. LCD, A/D, D/A and RTC interface with programming.

5. Introduction of PIC Micro controllers (04 Periods)

MICROCONTROLLERS

LEARNING OBJECTIVES:

 Concept of 8051microcontroller.

 Study of pin diagram.

 About I/O port and memory organization.

 To know about SFRs and external memory.

CHAPTER-1(Microcontroller Series)

1.1. INTRODUCTION

What is a Microcontroller?

A Microcontroller is a VLSI IC that contains a CPU (Processor) along with some other

peripherals like Memory (RAM and ROM), I/O Ports, Timers/Counters, Communication

Interface, ADC, etc.

Diagram of Microcontroller

On the contrary, a Microprocessor (which was developed before Microcontroller) is just a

Processor (CPU) and doesn’t have the above-mentioned peripherals. In order to make it work

or build a system around it, we need to interface the peripherals separately.

Until the development of Microcontrollers, almost all process and control tasks were

implemented using Microprocessors. As Microprocessor need the additional peripherals to

work as a system, the overall cost of the control system was high. But with the development of

Microcontroller, the situation has changed completely including the world of Embedded

Systems.

1.2. 8051 MICROCONTROLLER INTRODUCTION AND HISTORY

The 8051 Microcontroller Introduction gives a brief overview about the 8051 Microcontroller

and its history. Intel’s 8051 Microcontroller (Intel MSC-51 Architecture) was a successor to

8048 Microcontroller (Intel MSC-48 Architecture).

Originally, 8051 Microcontrollers were developed using N-MOS Technology but the use of

battery powered devices and their low power consumption lead to usage of CMOS technology

(which is famous for its low power consumption). Even though Intel developed 8051

Microcontrollers (which is discontinued in 2007), more than 20 semiconductor manufacturers

are still producing 8051 compatible microcontrollers i.e., processors based on MSC-51

Architecture.

Some of the 8051 Microcontrollers produced by different manufacturers are: Atmel (AT89C51,

AT89S51), Phillips (S87C654), STC Micro (STC89C52), Infineon (SAB-C515,

XC800), Siemens (SAB-C501), Silicon Labs (C8051), NXP (NXP700, NXP900), etc.

Majority of the modern 8051 Microcontrollers are Silicon IP Cores (Intellectual Property

Cores) but discrete 8051 Microcontroller ICs are also available. Because of their low power

consumption, smaller size and simple architecture, 8051 IP Cores are used in FPGAs (Field

Programmable Gate Array) and SoCs (System on Chip) instead of Advanced ARM

Architecture based MCUs.

1.3. APPLICATION OF 8051 MICROCONTROLLER

Even with the development of many advanced and superior Microcontrollers, 8051

Microcontroller is still being used in many embedded system and applications.

Some of the applications of 8051 Microcontroller are mentioned below:

 Consumer Appliances (TV Tuners, Remote controls, Computers, Sewing Machines,

etc.)

 Home Applications (TVs, VCR, Video Games, Camcorder, Music Instruments, Home

 Security Systems, Garage Door Openers, etc.)

 Communication Systems (Mobile Phones, Intercoms, Answering Machines, Paging

Devices, etc.)

 Office (Fax Machines, Printers, Copiers, Laser Printers, etc.)

 Automobiles (Air Bags, ABS, Engine Control, Transmission Control, Temperature

Control, Keyless Entry, etc)

 Aeronautical and Space

 Medical Equipment

 Defence Systems

 Robotics

 Industrial Process and Flow Control

 Radio and Networking Equipment

 Remote Sensing

1.4. 8051 MICROCONTROLLER BASICS

8051 is an 8 – bit Microcontroller i.e., the data bus of the 8051 Microcontroller (both internal

and external) is 8 – bit wide. It is a CISC based Microcontroller with Harvard Architecture

(Separate program and data memory). Since the basic layout of a microcontroller includes a

CPU, ROM, RAM, etc. the 8051 microcontrollers also have a similar layout. The following

image shows a brief layout of a typical 8051 Microcontroller.

1.5. 8051 MICROCONTROLLER FEATURES

► 8 – Bit ALU: ALU or Arithmetic Logic Unit is the heart of a microcontroller. It

performs arithmetic and bitwise operation on binary numbers. The ALU in 8051

is an 8 – Bit ALU i.e., it can perform operations on 8 – bit data.

► 8 – Bit Accumulator:The Accumulator is an important register associated with the

ALU. The accumulator in 8051 is an 8 – bit register.

► RAM: 8051 Microcontroller has 128 Bytes of RAM which includes SFRs and Input /

Output Port Registers.

► ROM: 8051 has 4 KB of on-chip ROM (Program Memory).

► I/O Ports: 8051 has four 8 – bit Input / Output Ports which are bit addressable and

bidirectional.

► Timers / Counters: 8051 has two 16 – bit Timers / Counters.

► Serial Port: 8051 supports full duplex UART Communication.

► External Memory: 8051Microcontroller can access two 16 – bit address line at once:

one each for RAM and ROM. The total external memory that an 8051 Microcontroller

can access for RAM and ROM is 64KB (216 for each type).

► Additional Features: Interrupts, on-chip oscillator, Boolean Processor, Power Down

Mode, etc.

NOTE: Some of the features like size of RAM and ROM, number of Timers, etc. are not

generic. They vary by manufacturer.

1.6. INTERRUPTS:

As the heading put forward, Interrupt is a sub-routine call that reads the Microcontroller’s key

function or job and helps it to perform some other program which is extra important at that

point of time. The characteristic of 8051 Interrupt is extremely constructive as it aids in

emergency cases. Interrupts provides us a method to postpone or delay the current process,

carry out a sub-routine task and then all over again restart standard program implementation.

The Micro-controller 8051 can be assembled in such a manner that it momentarily stops or

break the core program at the happening of interrupt. When sub-routine task is finished then

the implementation of core program initiates automatically as usual. There are 5 interrupts

supplies in 8051 Microcontroller, two out of five are peripheral interrupts, two are timer

interrupts and one is serial port interrupt.

1.7. MEMORY:

Micro-controller needs a program which is a set of commands. This program enlightens

Microcontroller to perform precise tasks. These programs need a storage space on which they

can be accumulated and interpret by Microcontroller to act upon any specific process. The

memory which is brought into play to accumulate the program of Microcontroller is recognized

as Program memory or code memory. In common language it’s also known as Read Only

Memory or ROM.

Microcontroller also needs a memory to amass data or operands for the short term. The storage

space which is employed to momentarily data storage for functioning is acknowledged as Data

Memory and we employ Random Access Memory or RAM for this principle reason.

Microcontroller 8051 contains code memory or program memory 4K so that is has 4KB Rom

and it also comprise of data memory (RAM) of 128 bytes.

1.7.1. BUS:

Fundamentally Bus is a group of wires which functions as a communication canal or mean

for the transfer Data. These buses comprise of 8, 16 or more cables. As a result, a bus can

bear 8 bits, 16 bits all together. There are two types of buses:

1. Address Bus: Microcontroller 8051 consists of 16 bit address bus. It is brought into

play to address memory positions. It is also utilized to transmit the address from Central

Processing Unit to Memory.

2. Data Bus: Microcontroller 8051 comprise of 8 bits data bus. It is employed to cart data.

1.7.2. OSCILLATOR:

As we all make out that Microcontroller is a digital circuit piece of equipment, thus it needs

timer for its function. For this function, Microcontroller 8051 consists of an on-chip oscillator

which toils as a time source for CPU (Central Processing Unit). As the productivity thumps of

oscillator are steady as a result, it facilitates harmonized employment of all pieces of 8051

Microcontroller. Input/output Port: As we are acquainted with that Microcontroller is employed

in embedded systems to manage the functions of devices.

Thus, to gather it to other machinery, gadgets or peripherals we need I/O (input/output)

interfacing ports in Micro-controller. For this function Micro-controller 8051 consists of 4

input/output ports to unite it to other peripherals. Timers/Counters: Micro-controller 8051 is

incorporated with two 16-bit counters & timers. The counters are separated into 8-bit registers.

The timers are utilized for measuring the intervals, to find out pulse width etc.

1.8. 8051 MICROCONTROLLER PIN DIAGRAM

8051 Microcontroller Pin Diagram

For explaining the pin diagram and pin configuration of microcontroller 8051, we are taking

into deliberation a 40 pin Dual inline package (DIP). Now let’s study through pin configuration

in brief: -

 Pins 1 – 8: - recognized as Port 1. Different from other ports, this port doesn’t provide

any other purpose. Port 1 is a domestically pulled up, quasi bi directional Input/output

port.

 Pin 9: - As made clear previously RESET pin is utilized to set the micro-controller

8051 to its primary values, whereas the micro-controller is functioning or at the early

beginning of application. The RESET pin has to be set elevated for two machine

rotations.

 Pins 10 – 17: - recognized as Port 3. This port also supplies a number of other functions

such as timer input, interrupts, serial communication indicators TxD & RxD, control

indicators for outside memory interfacing WR & RD, etc. This is a domestic pull up

port with quasi bi directional port within.

 Pins 18 and 19: - These are employed for interfacing an outer crystal to give system

clock.

 Pin 20: - Titled as Vss – it symbolizes ground (0 V) association.

 Pins- 21-28: - recognized as Port 2 (P 2.0 – P 2.7) – other than serving as Input/output

port, senior order address bus indicators are multiplexed with this quasi bi directional

port.

 Pin- 29: - Program Store Enable or PSEN is employed to interpret sign from outer

program memory.

 Pin-30: - External Access or EA input is employed to permit or prohibit outer memory

interfacing. If there is no outer memory need, this pin is dragged high by linking it to

Vcc.

 Pin-31: - Aka Address Latch Enable or ALE is brought into play to de-multiplex the

address data indication of port 0 (for outer memory interfacing). Two ALE throbs are

obtainable for every machine rotation.

 Pins 32-39: recognized as Port 0 (P0.0 to P0.7) – other than serving as Input/output

port, low order data & address bus signals are multiplexed with this port (to provide the

use of outer memory interfacing). This pin is a bi directional Input/output port (the

single one in microcontroller 8051) and outer pull up resistors are necessary to utilize

this port as Input/output.

 Pin-40: termed as Vcc is the chief power supply. By and large it is +5V DC.

1.9. APPLICATION OF 8051 MICROCONTROLLER:

The microcontroller 8051 applications include large number of machines, principally because

it is simple to incorporate in a project or to assemble a machine around it. The following are

the key spots of spotlight:

1. Energy Management: Competent measuring device systems aid in calculating energy

consumption in domestic and industrialized applications. These meter systems are

prepared competent by integrating microcontrollers.

2. Touch screens: A high degree of microcontroller suppliers integrate touch sensing

abilities in their designs. Transportable devices such as media players, gaming devices

& cell phones are some illustrations of micro-controller integrated with touch sensing

screens.

3. Automobiles: The microcontroller 8051 discovers broad recognition in supplying

automobile solutions. They are extensively utilized in hybrid motor vehicles to control

engine variations. In addition, works such as cruise power and anti-brake mechanism

has created it more capable with the amalgamation of micro-controllers.

4. Medical Devices: Handy medicinal gadgets such as glucose & blood pressure monitors

bring into play micro-controllers, to put on view the measurements, as a result, offering

higher dependability in giving correct medical results.

5. Medical Devices: Handy medicinal gadgets such as glucose & blood pressure monitors

bring into play micro-controllers, to put on view the measurements, as a result, offering

higher dependability in giving correct medical results.

1.10. 8051 MEMORY ORGANIZATION

Before going deep into the memory architecture of 8051, let’s talk a little bit about two

variations available for the same. They are Princeton architecture and Harvard architecture.

Princeton architecture treats address memory and data memory as a single unit (does not

distinguish between two) whereas Harvard architecture treats program memory and data

memory as Â separate Â entities. Thus, Harvard architecture demands address, data and

control bus for accessing them Â separately Â whereas Princeton architecture does not

demand any such separate bus.

Example: - 8051 micro controller is based on Harvard architecture and 8085 micro

processor is based on Princeton architecture.

Thus 8051 has two memories: - Program memory and Data memory

1.10.1. PROGRAM MEMORY ORGANIZATION

Now let’s dive into the program memory organization of 8051. It has an internal program of

4K size and if needed an external memory can be added (by interfacing) of size 60K maximum.

So, in total 64K size memory is available for 8051Â micro controller. Â by default, the External

Access (EA) pin should be connected Vcc so that instructions are fetched from internal memory

initially. When the limit of internal memory (4K) is crossed, control will automatically move

to external memory to fetch remaining instructions. If the programmer wants to fetch

instruction from external memory only (bypassing the internal memory), then he must connect

External Access (EA) pin to ground (GND). You may already know that 8051 has a special

feature of locking the program memory (internal) and hence protecting against software piracy.

This feature is enable by program lock bits. Once these bits are programmed, contents of

internal memory cannot be accessed using an external circuitry. However, locking the software

is not possible if external memory is also used to store the software code. Only internal memory

can be locked and protected. Â Once locked, these bits can be unlocked only by a memory-

erase operation, which in turn will erase the programs in internal memory too.

8051 is capable of Â pipelining. Pipelining makes a processor capable of fetching the next

instruction while executing previous instruction. It’s something like multi-tasking, doing more

than one operation at a time. 8051 is capable of fetching first byte of the next instruction while

executing the previous instruction.

1.10.2. DATA MEMORY ORGANIZATION

In the MCS-51 family, 8051 has 128 bytes of internal data memory and it allows interfacing

external data memory of maximum size up to 64K. So, the total size of data memory in 8051

can be up to 64K (external) Â + Â 128 bytes (internal). Â Observe the diagram carefully to

get more understanding. So, there are 3 separations/divisions of the data memory: -

1) Register banks

2) Bit Â addressable Â area

3) Scratch pad area.

Register banks form the lowest 32 bytes on internal memory and there are 4 register banks

designated bank #0, #1, #2 and #3. Each bank has 8 registers which are designated as R0,

R1…R7. At a time only one register bank is selected for operations and the registers inside the

selected bank are accessed using mnemonics R0... R1… etc. Other registers can be accessed

simultaneously only by direct addressing. Â Registers are used to store data or operands during

executions. Â By default register bank #0 is selected (after a system reset).

The bit addressable areas of 8051 is usually used to store bit variables. The bit addressable area

is formed by the 16 bytes next to register banks. They are designated from address 20H to 2FH

(total 128 bits). Each bits can be accessed from 00H to 7FH within this 128 bits from 20H to

2FH. Bit addressable area is mainly used to store bit variables from application program, like

status of an output device like LED or Motor (ON/OFF) etc. We need only a bit to store this

status and using a complete byte addressable area for storing this is really bad programming

practice, since it results in wastage of memory.

The scratch pad area is the upper 80 bytes which is used for general purpose storage. Scratch

pad area is from 30H to 7FH Â and this includes stack too.

1.11. SPECIAL FUNCTION REGISTERS (SFR)

Special function registers are upper RAM memory in the 8051 microcontrollers. These

registers contain all peripheral related registers like P0, P1, P2, P3, timers or counters, serial

port and interrupts-related registers. The SFR memory address starts from 80h to FFh. The SFR

register is implemented by bit-address registers and byte-address registers.

Special Function Registers (SFR)

The accumulator, B register, P0, P1, P2, P3, IE registers are bit-addressable register remaining

all are byte-addressable registers.

Accumulator

The accumulator which is also known as ACC or A is a bit as well as a byte-addressable register

by an address of the accumulator. If you want to use a bit-addressable register, you can use a

single bit (E0) of the register and you can use an 8-bit of the accumulator as a byte-addressable

register. The accumulator holds the results of most Arithmetic and logical operations.

Accumulator register

The Assembly program for subtraction used with an Accumulator

Org 0000h

MOV R0, # 09h

MOV A, #03h (1byte data)

SUBB A, 01h (1byte data)

END

B-Register

The B-register is a bit and byte-addressable register. You can access 1-bit or all 8-bits by a

physical

address F0h. Suppose to access a bit 1, we have to use f1. The B register is only used for

multiplication and division operations.

B-Register

The Assembly program for multiplication used with a B-Register

Org 0000h

MOV A, #09h

MOV B, #03h

MUL A, B (Final value stored in A)

END

The Assembly program for Division used with a B-Register

Org 0000h

MOV A, #09h

MOV B, #03h

DIC A, B (Final value stored in A)

END

Port Registers

The 8051 microcontroller consists of 4-input and output ports (P0, P1, P2, and P3) or 32-I/O

pins.

Each pin is designed with a transistor and P registers. The pin configuration is very important

for a

microcontroller that depends on the logic states of the registers. The pin configuration as input

given by 1 or output 0 depends on the logic states. If logic 1 is applied to the bit of the P register,

the output transistor switches off the appropriate pin that acts as an input pin.

Port Registers of 8051

Assembly program to toggle LEDs of Port0

ORG 0000h

RETURN: MOV P0, #00h

P a g e | 14

ACALL DEL1

MOV P0, #0FF

ACALL DEL1

SJMP RETURN

DEL1: MOV R2, #200

DEL: DJNZ R0, #230

DJNZ R2, DEL

RET

END

Counters and registers

Many microcontrollers consist of one or more timers and counters. The timers are used to

generate

precious time delay and the source for the timers is crystal oscillator. The counters are used to

count the number of external events – for instance, the objective counter , and the source for

counters are external pulses applied across the counter pin.

The 8051 microcontroller consists of two 16-bit timers and counters such as timer 0 and timer

1.

Both the timers consist of a 16-bit register in which the lower byte is stored in the TL and the

higher byte is stored in the TH. The Timer can be used as a counter as well as for timing

operation

that depends on the source of the clock pulses to the counters.

The Counters and Timers in 8051 microcontrollers contain two special function registers:

TMOD

(Timer Mode Register) and TCON (Timer Control Register), which are used for activating and

configuring timers and counters.

Types of Shift Register

Shift registers are a type of sequential logic circuits that are mainly used for storage of digital

data.

The shift registers are bit-addressable registers that store only one bit of data. The shift registers

are

constructed with flip-flops – a group of flip-flops connected as a chain so that the output from

one

flip-flop becomes the input of the next flip-flop.

All the flip-flops are driven by the clock signals that are implemented by the D-flip-flap. The

shift

registers are mainly used for serial communication.

These are classified into 4- types:

 Serial in Serial out (SISO)

 Serial in Parallel out (SIPO)

 Parallel in Serial out (PISO)

 Parallel in Parallel out (PIPO)

D- flipflop register

These are all different types of registers in an 8051 microcontroller. We hope that we have

successfully given you relevant content with the appropriate program for each register.

Furthermore, for any sort of help to know the coding of several other registers, you can contact

us by commenting below.

QUESTIONS:

MULTIPLE CHOICE QUESTIONS:

1)which of following is pin of 8051:

 (a) XTAL 1 (b) RST 5.5

 (c) RST 6.5 (d)RST 7.5

2) which of following is a part microprocessor:

 (a)ALU (b) register

 (c) interrupt (d) all of these above

SHORT ANSWER TYPES QUESTIONS:

1) What is microprocessor?

2) ALU stands for ……………..

3) What do you mean by bus?

4) What is function of ALE?

5) Write all types of memory.

LONG ANSWER TYPES QUESTIONS:

 1) Explain in detail pin diagram of 8051microprocessor.

 2) Explain in detail applications of 8051 microprocessor.

MICROCONTROLLERS

LEARNING OBJECTIVES:

 Concept of keypad interface.

 Study of 7 segment interface.

 To know about LCD,A/D,D/A.

CHAPTER-4(DESIGN AND INTERFACE)

4.1 KEYPAD INTERFACING 8051 MICROCONTROLLER : In this 8051 microcontroller

tutorial you will learn how to interface 8051 microcontroller with keypad. In this article, I will

guide you step by step programming part as well as structure of keypad. you can interface any

size

keypad with 8051 microcontroller. Before starting this article, you should know how to write

your

first program in keil and how to used input output ports of 8051 microcontroller. Because

keypad is used as a input with 8051 microcontroller. Matrix Keypads are mostly used in

calculators, mobile phones, telephones, ATM etc. It is used when a number of input switches

are

required. In this article we will study how to interface keypad with 8051 microcontroller. An

experiment will show the keypad interfacing. User will give input through keypad and then

that

input will be displayed on LCD.

4.1.1 KEYPAD STRUCTURE:

In a keypad, push button switches are arranged in rows and columns. For a 4×4 keypad 16

switches

are used and to connect to microcontroller we need 16 inputs pins. But the arrangement is

changed

by connecting switches in a special way. Now we need only 8 pins of microcontroller to

connect

keypad to

it.

The status of each key/switch is determined by Scanning the rows or columns. The column

pins

(Col 1–Col4) are connected to the microcontroller as the inputs pinsand the rows pins (Row 1–

Row

4) are connected to the output pins of the microcontroller. Normally, all the column pins are

pulled

high by internal or external pull up resistors. Now we can read the status of each switch through

scanning.

4.1.2 READING DATA:

Scanning is done in a different way. Columns pins are used as input pins, and rows pins are

used as

output. If a low logic is given to all the Rows and high logic is given to each Column.

For finding Column number:

 When a switch/key is pressed, the corresponding row and column will get short.

 Output of the corresponding column goes to go low.

P a g e | 2

 Since we have made all the rows zero so this gives the column number of the pressed key.

For Finding Row number:

 After the detection of column number, the controller set’s all the rows to high.

 Each row is one by one set to zero by the microcontroller and the earlier detected column is

checked and obviously it becomes zero.

 The row due to which the column gets zero is the row number of the pressed key.

4.2 7 Segment display Interfacing with 8051 Microcontroller

Interfacing a 8051 microcontroller with a 7 segment Common Anode Display.

1. The 7 segment display is found in many displays such as microwaves or fancy toaster ovens

and

occasionally in non cooking devices. It is just 7 LEDs that have been combined into one case

to

make a convenient device for displaying numbers and some letters. The display is shown on

the

left. The pin out of the display is on the right.

This version is a common anode version. That means that the positive leg of each LED is

connected to a common point which is pin 3 in this case. Each LED has a negative leg that is

connected to one of the pins of the device. To make it work you need to connect pin 3 to 5

volts.

Then to make each segment light up, connect the ground pin for that led to ground. A resistor

is

required to limit the current. Rather than using a resistor from each LED to ground, you can

just

use one resistor from Vcc to pin 3 to limit the current.

The following table shows how to form the numbers 0 to 9 and the letters A, b, C, d, E, and F.

'0'

means that pin is connected to ground. '1' means that pin is connected to Vcc.

P a g e | 3

Now, we want to run the display with the AT89C51 microcontroller. We will use Port 0 to run

the

display. Connect the AT89C51 to the 7 segment display as follows.

P a g e | 4

4.3 LCD interfacing with 8051 Microcontroller

4.3.1 LCD DISPLAY

We always use devices made up of Liquid Crystal Displays (LCDs) like computers, digital

watches

and also DVD and CD players. They have become very common and have taken a giant leap

in the

screen industry by clearly replacing the use of Cathode Ray Tubes (CRT). CRT draws more

power

than LCD and are also bigger and heavier. All of us have seen a LCD, but no one knows the

exact

working of it. Let us take a look at the working of a LCD.

Here we are using alphanumeric LCD 16×2. A 16×2 LCD display is very basic module and is

very

commonly used in various devices and circuits. These modules are preferred over seven

segments

and other multi segment LEDs. The reasons being: LCDs are economical; easily

programmable;

have no limitation of displaying special & even custom characters (unlike in seven segments),

animations and so on.

A 16×2 LCD means it can display 16 characters per line and there are 2 such lines. In this LCD

each character is displayed in 5×7 pixel matrix. This LCD has two registers, namely, Command

and Data. The command register stores the command instructions given to the LCD. A

command is

an instruction given to LCD to do a predefined task like initializing it, clearing its screen, setting

the cursor position, controlling display etc. The data register stores the data to be displayed on

the

LCD. The data is the ASCII value of the character to be displayed on the LCD.

Pin Diagram

P a g e | 5

Pin Description

Pin

No Function Name

1 Ground (0V) Ground

2 Supply voltage; 5V (4.7V – 5.3V) Vcc

3 Contrast adjustment; through a variable resistor VEE

4 Selects command register when low; and data register when high Register Select

5 Low to write to the register; High to read from the register Read/write

6 Sends data to data pins when a high to low pulse is given Enable

7

8-bit data pins

DB0

8 DB1

9 DB2

10 DB3

11 DB4

12 DB5

13 DB6

14 DB7

15 Backlight VCC (5V) Led+

16 Backlight Ground (0V) Led-

P a g e | 6

The LCD display module requires 3 control lines as well as either 4 or 8 I/O lines for the data

bus.

The user may select whether the LCD is to operate with a 4-bit data bus or an 8-bit data bus. If

a 4-

bit data bus is used the LCD will require a total of 7 data lines (3 control lines plus the 4 lines

for

the data bus). If an 8-bit data bus is used the LCD will require a total of 11 data lines (3 control

lines plus the 8 lines for the data bus).

The three control lines are referred to as EN, RS, and RW.

The EN line is called “Enable.” This control line is used to tell the LCD that you are sending it

data. To send data to the LCD, your program should make sure this line is low (0) and then set

the

other two control lines and/or put data on the data bus. When the other lines are completely

ready,

bring EN high (1) and wait for the minimum amount of time required by the LCD datasheet

(this

varies from LCD to LCD), and end by bringing it low (0) again.

The RS line is the “Register Select” line. When RS is low (0), the data is to be treated as a

command or special instruction (such as clear screen, position cursor, etc.). When RS is high

(1),

the data being sent is text data which should be displayed on the screen. For example, to display

the

letter “T” on the screen you would set RS high.

The RW line is the “Read/Write” control line. When RW is low (0), the information on the

data

bus is being written to the LCD. When RW is high (1), the program is effectively querying (or

reading) the LCD. Only one instruction (“Get LCD status”) is a read command. All others are

write

commands–so RW will almost always be low.

Finally, the data bus consists of 4 or 8 lines (depending on the mode of operation selected by

the

user). In the case of an 8-bit data bus, the lines are referred to as DB0, DB1, DB2, DB3, DB4,

DB5, DB6, and DB7.

4.3.2 LCD COMMANDS

Now let’s move to programming.

P a g e | 7

4.3.3. CIRCUIT DIAGRAM

RS is connected to Port 0.0 (P0.0)

RW is connected to Port 0.1 (P0.1)

EN is connected to Port 0.2 (P0.2)

Data lines are connected into Port 2 (P2)

ADC (Analog to digital converter) forms a very essential part in many embedded projects and

this article is about interfacing an ADC to 8051 embedded controller. ADC 0804 is the ADC

used

here and before going through the interfacing procedure, we must neatly understand how the

ADC

0804 works.

4.4 ADC INTERFACE

ADC0804 is an 8 bit successive approximation analogue to digital converter from National

semiconductors. The features of ADC0804 are differential analogue voltage inputs, 0-5V input

voltage range, no zero adjustment, built in clock generator, reference voltage can be externally

adjusted to convert smaller analogue voltage span to 8 bit resolution etc. The pin out diagram

of

ADC0804 is shown in the figure below.

P a g e | 8

ADC0804 pinout

The voltage at Vref/2 (pin9) of ADC0804 can be externally adjusted to convert smaller input

voltage spans to full 8 bit resolution. Vref/2 (pin9) left open means input voltage span is 0-5V

and

step size is 5/255=19.6V. Have a look at the table below for different Vref/2 voltages and

corresponding analogue input voltage spans.

Vref/2 (pin9) (volts) Input voltage span (volts) Step size (mV)

Left open 0 – 5 5/255 = 19.6

2 0 – 4 4/255 = 15.69

1.5 0 – 3 3/255 = 11.76

1.28 0 – 2.56 2.56/255 = 10.04

1.0 0 – 2 2/255 = 7.84

0.5 0 – 1 1/255 = 3.92

4.4.1 Steps for converting the analogue input and reading the output from ADC0804.

 Make CS=0 and send a low to high pulse to WR pin to start the conversion.

 Now keep checking the INTR pin. INTR will be 1 if conversion is not finished and INTR

will be 0

if conversion is finished.

 If conversion is not finished (INTR=1) , poll until it is finished.

 If conversion is finished (INTR=0), go to the next step.

 Make CS=0 and send a high to low pulse to RD pin to read the data from the ADC.

P a g e | 9

4.4.2 Circuit diagram.

Interfacing ADC to 8051

The figure above shows the schematic for interfacing ADC0804 to 8051. The circuit initiates

the

ADC to convert a given analogue input , then accepts the corresponding digital data and

displays it

on the LED array connected at P0. For example, if the analogue input voltage Vin is 5V then

all

LEDs will glow indicating 11111111 in binary which is the equivalent of 255 in decimal.

AT89s51

is the microcontroller used here. Data out pins (D0 to D7) of the ADC0804 are connected to

the

port pins P1.0 to P1.7 respectively. LEDs D1 to D8 are connected to the port pins P0.0 to P0.7

respectively. Resistors R1 to R8 are current limiting resistors. In simple words P1 of the

microcontroller is the input port and P0 is the output port. Control signals for the ADC (INTR,

WR, RD and CS) are available at port pins P3.4 to P3.7 respectively. Resistor R9 and capacitor

C1

are associated with the internal clock circuitry of the ADC. Preset resistor R10 forms a voltage

divider which can be used to apply a particular input analogue voltage to the ADC. Push button

S1,

resistor R11 and capacitor C4 forms a debouncing reset mechanism. Crystal X1 and capacitors

C2,C3 are associated with the clock circuitry of the microcontroller.

4.5 RTC INTERFACE

4.5.1 RTC (DS1307)

P a g e | 10

Introduction

The DS1307 serial real-time clock (RTC) is a low-power, full binary-coded decimal (BCD)

clock/calendar plus 56 bytes of NV SRAM. Address and data are transferred serially through

an

I²C, bidirectional bus. The clock/calendar provides seconds, minutes, hours, day, date, month,

and

year information. The end of the month date is automatically adjusted for months with fewer

than

31 days, including corrections for leap year. The clock operates in either the 24-hour or 12-

hour

format with AM/PM indicator. The DS1307 has a built-in power-sense circuit that detects

power

failures and automatically switches to the backup supply. Timekeeping operation continues

while

the part operates from the backup supply.

Features

 Completely Manages All Timekeeping Functions

 Real-Time Clock Counts Seconds, Minutes, Hours, Date of the Month, Month, Day of the

Week, and Year with Leap-Year Compensation Valid Up to 2100

 56-Byte, Battery-Backed, General-Purpose RAM with Unlimited Writes

 Programmable Square-Wave Output Signal

 Simple Serial Port Interfaces to Most Microcontrollers

 I

2C Serial Interface

 Low Power Operation Extends Battery Backup Run Time

 Consumes Less than 500nA in Battery-Backup Mode with Oscillator Running

 Automatic Power-Fail Detect and Switch Circuitry

 8-Pin DIP and 8-Pin SO Minimizes Required Space

 Optional Industrial Temperature Range: -40°C to +85°C Supports Operation in a Wide

Range

of Applications

 Underwriters Laboratories®

(UL) Recognized

VCC, GND: These pins are used to provide the power to the chip. When 5V is applied within

normal limits, the device is fully accessible and data can be written and read. When a 3V battery

is

connected to the device and VCC is below 1.25 x VBAT, reads and writes are inhibited.

However,

the timekeeping function continues unaffected by the lower input voltage. As VCC falls below

P a g e | 11

VBAT the RAM and timekeeper are switched over to the external power supply (nominal 3.0V

DC) at VBAT.

X1-X2:Pins to connect the external 32.768kHz oscillator that provides the clock source to the

chip.

Vbat: A 3.3v Lithium battery can be connected to this pin in order to provide the power source

when the external supply voltage is not available. Battery voltage must be held between 2.0V

and

3.5V for proper operation.

SCL: This pin must be connected to SCL pin of the I2C Bus/Master.

SDA: This pin must be connected to SDA pin of the I2C Bus/Master.

SQW/OUT: When enabled, the SQWE bit set to 1, the SQW/OUT pin outputs one of four

square

wave frequencies (1Hz, 4kHz, 8kHz, 32kHz).

 Note: The SCL,SDA and SQW are open drain and must be pulled up with appropriate pull

up

resistors

Connection circuit

DS1307 requires very less number of components to operate. One of the mandatory component

is

the crystal oscillator of 32.768kHz. The battery backup is optional as you can connect power

source to Vbatt pin. But It is good to have battery connected. When running on battery it only

consumes 500 nA of current just for the operation of clock and to maintain content of NV

RAM.

Your can use a coin cell type battery as backup source for DS1307.

Following image shows typical connection diagram for DS1307 RTC.

DS1307 Memory

All the registers of DS1307 stores value as BCD, i.e. if clock is at 49 seconds then register

0x00

will show 0x49 as binary coded decimal value of 49. This makes it easy for programmer to

read

and display number on LCD or serial terminal. So if you want to use register values of RTC

then

first convert the value from BCD to decimal and then use it.

The RTC keeps the date and time arranged in it’s memory as shown below:

P a g e | 12

Register 0x07 is control register for square wave output pin. RS0 and RS1 bit selects the output

frequency as per table below:

You can also use SQW/Out pin as GPO pin, when SQW function of DS1307 is not used. Bit 7

controls the output level of the pin. If OUT bit is 1 then OUT pin is high and when 0 OUT pin

will

be low.

4.5.2 RTC Interfacing with 8051

DS1307 uses I2C Protocol and act as a slave device and I2C Master can read/write register of

RTC.

To communicate with the slave device, master need the slave address of device connected on

bus.

DS1307 has fixed slave address which makes it impossible to connect two RTC devices on

same

bus, don’t worry occurrence of such a scenario is close to zero.

Slave address for I2C Write: 0b11010000 = 0xD0

Slave address for I2C Read: 0b11010001 = 0xD1

Components Required

 8051 Development board

 LCD Module

 Keypad

 RTC DS1307

 Buzzer

Circuit Diagram

P a g e | 13

EXPLANATION

 The RTC is connected to the Port 3.

 The LCD data lines are given to the Port2. RS is given to port pin P0.0, RW to P0.1and

enable

to P0.2.

 Keypad is connected in to P1.

 Buzzer is connected into P0.7.

QUESTIONS:

MULTIPLE CHOICE QUESTIONS:

1)which of following is ADC:

 (a) 0804 (b) timer 1

 (c) ORG (d)all

2) which of following is a part of LCD:

 (a)CRT (b) register

 (c) intruppt (d) all of these above

P a g e | 14

SHORT ANSWER TYPES QUESTIONS:

1) What is keypad?

2) LCD stands for ……………..

3) What do you mean by 7 segment display?

4) What is function of ADC?

5) Write any five LCD commands.

LONG ANSWER TYPES QUESTIONS:

 1) Explain in detail keypad interface.

 2) Explain in detail RTC interface.

Left

 RLC - Rotate Accumulator Left Through Carry

 RR - Rotate Accumulator Right

 RRC - Rotate Accumulator Right Through Carry

 SETB - Set Bit

 SJMP - Short Jump

 SUBB - Subtract From Accumulator With Borrow

 SWAP - Swap Accumulator Nibbles

 XCH - Exchange Bytes

 XCHD - Exchange Digits

 XRL - Bitwise Exclusive OR

 Undefined - Undefined Instruction

8051 Instruction Set: ACALL

Operation: ACALL

Function: Absolute Call Within 2K Block

Syntax: ACALL code address

Instructions OpCode Bytes Flags

ACALL page0 0x11 2 None

ACALL page1 0x31 2 None

ACALL page2 0x51 2 None

ACALL page3 0x71 2 None

ACALL page4 0x91 2 None

ACALL page5 0xB1 2 None

ACALL page6 0xD1 2 None

ACALL page7 0xF1 2 None

Description: ACALL unconditionally calls a subroutine at the indicated code address. ACALL

pushes the address of the instruction that follows ACALL onto the stack, least-significant-byte

first, most-significant-byte second. The Program Counter is then updated so that program

execution

continues at the indicated address.

P a g e | 3

The new value for the Program Counter is calculated by replacing the least-significant-byte of

the

Program Counter with the second byte of the ACALL instruction, and replacing bits 0-2 of the

most-significant-byte of the Program Counter with 3 bits that indicate the page. Bits 3-7 of the

most-significant-byte of the Program Counter remain unchaged.

Since only 11 bits of the Program Counter are affected by ACALL, calls may only be made to

routines located within the same 2k block as the first byte that follows ACALL.

See Also: LCALL, RET

8051 Instruction Set: ADD

Operation: ADD, ADDC

Function: Add Accumulator, Add Accumulator With Carry

Syntax: ADD A,operand

ADDC A,operand

Instructions OpCode Bytes Flags

ADD A,#data 0x24 2

C, AC,

OV

ADD A,iram

addr 0x25 2

C, AC,

OV

ADD A,@R0 0x26 1

C, AC,

OV

ADD A,@R1 0x27 1

C, AC,

OV

ADD A,R0 0x28 1

C, AC,

OV

ADD A,R1 0x29 1

C, AC,

OV

ADD A,R2 0x2A 1

C, AC,

OV

Instructions OpCode Bytes Flags

ADDC A,#data 0x34 2

C, AC,

OV

ADDC A,iram

addr 0x35 2

C, AC,

OV

ADDC A,@R0 0x36 1

C, AC,

OV

ADDC A,@R1 0x37 1

C, AC,

OV

ADDC A,R0 0x38 1

C, AC,

OV

ADDC A,R1 0x39 1

C, AC,

OV

ADDC A,R2 0x3A 1

C, AC,

OV

P a g e | 4

ADD A,R3 0x2B 1

C, AC,

OV

ADD A,R4 0x2C 1

C, AC,

OV

ADD A,R5 0x2D 1

C, AC,

OV

ADD A,R6 0x2E 1

C, AC,

OV

ADD A,R7 0x2F 1

C, AC,

OV

ADDC A,R3 0x3B 1

C, AC,

OV

ADDC A,R4 0x3C 1

C, AC,

OV

ADDC A,R5 0x3D 1

C, AC,

OV

ADDC A,R6 0x3E 1

C, AC,

OV

ADDC A,R7 0x3F 1

C, AC,

OV

Description: Description: ADD and ADDC both add the value operand to the value of the

Accumulator, leaving the resulting value in the Accumulator. The value operand is not affected.

ADD and ADDC function identically except that ADDC adds the value of operand as well as

the

value of the Carry flag whereas ADD does not add the Carry flag to the result.

The Carry bit (C) is set if there is a carry-out of bit 7. In other words, if the unsigned summed

value of the Accumulator, operand and (in the case of ADDC) the Carry flag exceeds 255 Carry

is

set. Otherwise, the Carry bit is cleared.

The Auxillary Carry (AC) bit is set if there is a carry-out of bit 3. In other words, if the unsigned

summed value of the low nibble of the Accumulator, operand and (in the case of ADDC) the

Carry

flag exceeds 15 the Auxillary Carry flag is set. Otherwise, the Auxillary Carry flag is cleared.

The Overflow (OV) bit is set if there is a carry-out of bit 6 or out of bit 7, but not both. In other

words, if the addition of the Accumulator, operand and (in the case of ADDC) the Carry flag

treated as signed values results in a value that is out of the range of a signed byte (-128 through

+127) the Overflow flag is set. Otherwise, the Overflow flag is cleared.

See Also: SUBB, DA, INC, DEC

8051 Instruction Set: AJMP

Operation: AJMP

Function: Absolute Jump Within 2K Block

Syntax: AJMP code address

P a g e | 5

Instructions OpCode Bytes Flags

AJMP page0 0x01 2 None

AJMP page1 0x21 2 None

AJMP page2 0x41 2 None

AJMP page3 0x61 2 None

AJMP page4 0x81 2 None

AJMP page5 0xA1 2 None

AJMP page6 0xC1 2 None

AJMP page7 0xE1 2 None

Description: AJMP unconditionally jumps to the indicated code address. The new value for the

Program Counter is calculated by replacing the least-significant-byte of the Program Counter

with

the second byte of the AJMP instruction, and replacing bits 0-2 of the most-significant-byte of

the

Program Counter with 3 bits that indicate the page of the byte following the AJMP instruction.

Bits

3-7 of the most-significant-byte of the Program Counter remain unchaged.

Since only 11 bits of the Program Counter are affected by AJMP, jumps may only be made to

code

located within the same 2k block as the first byte that follows AJMP.

See Also: LJMP, SJMP

8051 Instruction Set: ANL

Operation: ANL

Function: Bitwise AND

Syntax: ANL operand1, operand2

Instructions OpCode Bytes Flags

ANL iram addr,A 0x52 2 None

P a g e | 6

ANL iram addr,#data 0x53 3 None

ANL A,#data 0x54 2 None

ANL A,iram addr 0x55 2 None

ANL A,@R0 0x56 1 None

ANL A,@R1 0x57 1 None

ANL A,R0 0x58 1 None

ANL A,R1 0x59 1 None

ANL A,R2 0x5A 1 None

ANL A,R3 0x5B 1 None

ANL A,R4 0x5C 1 None

ANL A,R5 0x5D 1 None

ANL A,R6 0x5E 1 None

ANL A,R7 0x5F 1 None

ANL C,bit addr 0x82 2 C

ANL C,/bit addr 0xB0 2 C

Description: ANL does a bitwise "AND" operation between operand1 and operand2, leaving

the

resulting value in operand1. The value of operand2 is not affected. A logical "AND" compares

the

bits of each operand and sets the corresponding bit in the resulting byte only if the bit was set

in

both of the original operands, otherwise the resulting bit is cleared.

See Also: ORL, XRL

8051 Instruction Set: CJNE

Operation: CJNE

P a g e | 7

Function: Compare and Jump If Not Equal

Syntax: CJNE operand1,operand2,reladdr

Instructions OpCode Bytes Flags

CJNE A,#data,reladdr 0xB4 3 C

CJNE A,iram addr,reladdr 0xB5 3 C

CJNE @R0,#data,reladdr 0xB6 3 C

CJNE @R1,#data,reladdr 0xB7 3 C

CJNE R0,#data,reladdr 0xB8 3 C

CJNE R1,#data,reladdr 0xB9 3 C

CJNE R2,#data,reladdr 0xBA 3 C

CJNE R3,#data,reladdr 0xBB 3 C

CJNE R4,#data,reladdr 0xBC 3 C

CJNE R5,#data,reladdr 0xBD 3 C

CJNE R6,#data,reladdr 0xBE 3 C

CJNE R7,#data,reladdr 0xBF 3 C

Description: CJNE compares the value of operand1 and operand2 and branches to the indicated

relative address if operand1 and operand2 are not equal. If the two operands are equal program

flow continues with the instruction following the CJNE instruction.

The Carry bit (C) is set if operand1 is less than operand2, otherwise it is cleared.

See Also: DJNZ

8051 Instruction Set: CLR

Operation: CLR

P a g e | 8

Function: Clear Register

Syntax: CLR register

Instructions OpCode Bytes Flags

CLR bit addr 0xC2 2 None

CLR C 0xC3 1 C

CLR A 0xE4 1 None

Description: CLR clears (sets to 0) all the bit(s) of the indicated register. If the register is a bit

(including the carry bit), only the specified bit is affected. Clearing the Accumulator sets the

Accumulator's value to 0.

See Also: SETB

8051 Instruction Set: CPL

Operation: CPL

Function: Complement Register

Syntax: CPL operand

Instructions OpCode Bytes Flags

CPL A 0xF4 1 None

CPL C 0xB3 1 C

CPL bit addr 0xB2 2 None

Description: CPL complements operand, leaving the result in operand. If operand is a single

bit

then the state of the bit will be reversed. If operand is the Accumulator then all the bits in the

Accumulator will be reversed. This can be thought of as "Accumulator Logical Exclusive OR

255"

or as "255-Accumulator." If the operand refers to a bit of an output Port, the value that will be

complemented is based on the last value written to that bit, not the last value read from it.

See Also: CLR, SETB

P a g e | 9

8051 Instruction Set: DA

Operation: DA

Function: Decimal Adjust Accumulator

Syntax: DA A

Instructions OpCode Bytes Flags

DA 0xD4 1 C

Description: DA adjusts the contents of the Accumulator to correspond to a BCD (Binary

Coded

Decimal) number after two BCD numbers have been added by the ADD or ADDC instruction.

If

the carry bit is set or if the value of bits 0-3 exceed 9, 0x06 is added to the accumulator. If the

carry

bit was set when the instruction began, or if 0x06 was added to the accumulator in the first step,

0x60 is added to the accumulator.

The Carry bit (C) is set if the resulting value is greater than 0x99, otherwise it is cleared.

See Also: ADD, ADDC

8051 Instruction Set: DEC

Operation: DEC

Function: Decrement Register

Syntax: DEC register

Instructions OpCode Bytes Flags

DEC A 0x14 1 None

DEC iram addr 0x15 2 None

DEC @R0 0x16 1 None

DEC @R1 0x17 1 None

DEC R0 0x18 1 None

DEC R1 0x19 1 None

P a g e | 10

DEC R2 0x1A 1 None

DEC R3 0x1B 1 None

DEC R4 0x1C 1 None

DEC R5 0x1D 1 None

DEC R6 0x1E 1 None

DEC R7 0x1F 1 None

Description: DEC decrements the value of register by 1. If the initial value of register is 0,

decrementing the value will cause it to reset to 255 (0xFF Hex). Note: The Carry Flag is NOT

set

when the value "rolls over" from 0 to 255.

See Also: INC, SUBB

8051 Instruction Set: DIV

Operation: DIV

Function: Divide Accumulator by B

Syntax: DIV AB

Instructions OpCode Bytes Flags

DIV AB 0x84 1 C, OV

Description: Divides the unsigned value of the Accumulator by the unsigned value of the "B"

register. The resulting quotient is placed in the Accumulator and the remainder is placed in the

"B"

register.

The Carry flag (C) is always cleared.

The Overflow flag (OV) is set if division by 0 was attempted, otherwise it is cleared.

See Also: MUL AB

8051 Instruction Set: DJNZ

P a g e | 11

Operation: DJNZ

Function: Decrement and Jump if Not Zero

Syntax: DJNZ register,reladdr

Instructions OpCode Bytes Flags

DJNZ iram addr,reladdr 0xD5 3 None

DJNZ R0,reladdr 0xD8 2 None

DJNZ R1,reladdr 0xD9 2 None

DJNZ R2,reladdr 0xDA 2 None

DJNZ R3,reladdr 0xDB 2 None

DJNZ R4,reladdr 0xDC 2 None

DJNZ R5,reladdr 0xDD 2 None

DJNZ R6,reladdr 0xDE 2 None

DJNZ R7,reladdr 0xDF 2 None

Description: DJNZ decrements the value of register by 1. If the initial value of register is 0,

decrementing the value will cause it to reset to 255 (0xFF Hex). If the new value of register is

not 0

the program will branch to the address indicated by relative addr. If the new value of register

is 0

program flow continues with the instruction following the DJNZ instruction.

See Also: DEC, JZ, JNZ

8051 Instruction Set: INC

Operation: INC

Function: Increment Register

Syntax: INC register

P a g e | 12

Instructions OpCode Bytes Flags

INC A 0x04 1 None

INC iram addr 0x05 2 None

INC @R0 0x06 1 None

INC @R1 0x07 1 None

INC R0 0x08 1 None

INC R1 0x09 1 None

INC R2 0x0A 1 None

INC R3 0x0B 1 None

INC R4 0x0C 1 None

INC R5 0x0D 1 None

INC R6 0x0E 1 None

INC R7 0x0F 1 None

INC DPTR 0xA3 1 None

Description: INC increments the value of register by 1. If the initial value of register is 255

(0xFF

Hex), incrementing the value will cause it to reset to 0. Note: The Carry Flag is NOT set when

the

value "rolls over" from 255 to 0.

In the case of "INC DPTR", the value two-byte unsigned integer value of DPTR is incremented.

If

the initial value of DPTR is 65535 (0xFFFF Hex), incrementing the value will cause it to reset

to 0.

Again, the Carry Flag is NOT set when the value of DPTR "rolls over" from 65535 to 0.

See Also: ADD, ADDC, DEC

8051 Instruction Set: JB

P a g e | 13

Operation: JB

Function: Jump if Bit Set

Syntax: JB bit addr, reladdr

Instructions OpCode Bytes Flags

JB bit addr,reladdr 0x20 3 None

Description: JB branches to the address indicated by reladdr if the bit indicated by bit addr is

set.

If the bit is not set program execution continues with the instruction following the JB

instruction.

See Also: JBC, JNB

8051 Instruction Set: JBC

Operation: JBC

Function: Jump if Bit Set and Clear Bit

Syntax: JB bit addr, reladdr

Instructions OpCode Bytes Flags

JBC bit addr,reladdr 0x10 3 None

Description: JBC will branch to the address indicated by reladdr if the bit indicated by bit addr

is

set. Before branching to reladdr the instruction will clear the indicated bit. If the bit is not set

program execution continues with the instruction following the JBC instruction.

See Also: JB, JNB

8051 Instruction Set: JC

Operation: JC

Function: Jump if Carry Set

Syntax: JC reladdr

Instructions OpCode Bytes Flags

P a g e | 14

JC reladdr 0x40 2 None

Description: JC will branch to the address indicated by reladdr if the Carry Bit is set. If the

Carry

Bit is not set program execution continues with the instruction following the JC instruction.

See Also: JNC

8051 Instruction Set: JMP

Operation: JMP

Function: Jump to Data Pointer + Accumulator

Syntax: JMP @A+DPTR

Instructions OpCode Bytes Flags

JMP @A+DPTR 0x73 1 None

Description: JMP jumps unconditionally to the address represented by the sum of the value of

DPTR and the value of the Accumulator.

See Also: LJMP, AJMP, SJMP

8051 Instruction Set: JNB

Operation: JNB

Function: Jump if Bit Not Set

Syntax: JNB bit addr,reladdr

Instructions OpCode Bytes Flags

JNB bit addr,reladdr 0x30 3 None

Description: JNB will branch to the address indicated by reladdress if the indicated bit is not

set.

If the bit is set program execution continues with the instruction following the JNB instruction.

See Also: JB, JBC

P a g e | 15

8051 Instruction Set: JNC

Operation: JNC

Function: Jump if Carry Not Set

Syntax: JNC reladdr

Instructions OpCode Bytes Flags

JNC reladdr 0x50 2 None

Description: JNC branches to the address indicated by reladdr if the carry bit is not set. If the

carry bit is set program execution continues with the instruction following the JNB instruction.

See Also: JC

8051 Instruction Set: JNZ

Operation: JNZ

Function: Jump if Accumulator Not Zero

Syntax: JNZ reladdr

Instructions OpCode Bytes Flags

JNZ reladdr 0x70 2 None

Description: JNZ will branch to the address indicated by reladdr if the Accumulator contains

any

value except 0. If the value of the Accumulator is zero program execution continues with the

instruction following the JNZ instruction.

See Also: JZ

8051 Instruction Set: JZ

Operation: JZ

Function: Jump if Accumulator Zero

Syntax: JNZ reladdr

P a g e | 16

Instructions OpCode Bytes Flags

JZ reladdr 0x60 2 None

Description: JZ branches to the address indicated by reladdr if the Accumulator contains the

value

0. If the value of the Accumulator is non-zero program execution continues with the instruction

following the JNZ instruction.

See Also: JNZ

8051 Instruction Set: LCALL

Operation: LCALL

Function: Long Call

Syntax: LCALL code addr

Instructions OpCode Bytes Flags

LCALL code addr 0x12 3 None

Description: LCALL calls a program subroutine. LCALL increments the program counter by

3 (to

point to the instruction following LCALL) and pushes that value onto the stack (low byte first,

high

byte second). The Program Counter is then set to the 16-bit value which follows the LCALL

opcode, causing program execution to continue at that address.

See Also: ACALL, RET

8051 Instruction Set: LJMP

Operation: LJMP

Function: Long Jump

Syntax: LJMP code addr

Instructions OpCode Bytes Flags

LJMP code addr 0x02 3 None

Description: LJMP jumps unconditionally to the specified code addr.

P a g e | 17

See Also: AJMP, SJMP, JMP

8051 Instruction Set: MOV

Operation: MOV

Function: Move Memory

Syntax: MOV operand1,operand2

Instructions OpCode Bytes Flags

MOV @R0,#data 0x76 2 None

MOV @R1,#data 0x77 2 None

MOV @R0,A 0xF6 1 None

MOV @R1,A 0xF7 1 None

MOV @R0,iram addr 0xA6 2 None

MOV @R1,iram addr 0xA7 2 None

MOV A,#data 0x74 2 None

MOV A,@R0 0xE6 1 None

MOV A,@R1 0xE7 1 None

MOV A,R0 0xE8 1 None

MOV A,R1 0xE9 1 None

MOV A,R2 0xEA 1 None

MOV A,R3 0xEB 1 None

MOV A,R4 0xEC 1 None

P a g e | 18

MOV A,R5 0xED 1 None

MOV A,R6 0xEE 1 None

MOV A,R7 0xEF 1 None

MOV A,iram addr 0xE5 2 None

MOV C,bit addr 0xA2 2 C

MOV DPTR,#data16 0x90 3 None

MOV R0,#data 0x78 2 None

MOV R1,#data 0x79 2 None

MOV R2,#data 0x7A 2 None

MOV R3,#data 0x7B 2 None

MOV R4,#data 0x7C 2 None

MOV R5,#data 0x7D 2 None

MOV R6,#data 0x7E 2 None

MOV R7,#data 0x7F 2 None

MOV R0,A 0xF8 1 None

MOV R1,A 0xF9 1 None

MOV R2,A 0xFA 1 None

MOV R3,A 0xFB 1 None

MOV R4,A 0xFC 1 None

MOV R5,A 0xFD 1 None

P a g e | 19

MOV R6,A 0xFE 1 None

MOV R7,A 0xFF 1 None

MOV R0,iram addr 0xA8 2 None

MOV R1,iram addr 0xA9 2 None

MOV R2,iram addr 0xAA 2 None

MOV R3,iram addr 0xAB 2 None

MOV R4,iram addr 0xAC 2 None

MOV R5,iram addr 0xAD 2 None

MOV R6,iram addr 0xAE 2 None

MOV R7,iram addr 0xAF 2 None

MOV bit addr,C 0x92 2 None

MOV iram addr,#data 0x75 3 None

MOV iram addr,@R0 0x86 2 None

MOV iram addr,@R1 0x87 2 None

MOV iram addr,R0 0x88 2 None

MOV iram addr,R1 0x89 2 None

MOV iram addr,R2 0x8A 2 None

MOV iram addr,R3 0x8B 2 None

MOV iram addr,R4 0x8C 2 None

MOV iram addr,R5 0x8D 2 None

P a g e | 20

MOV iram addr,R6 0x8E 2 None

MOV iram addr,R7 0x8F 2 None

MOV iram addr,A 0xF5 2 None

MOV iram addr,iram addr 0x85 3 None

Description: MOV copies the value of operand2 into operand1. The value of operand2 is not

affected. Both operand1 and operand2 must be in Internal RAM. No flags are affected unless

the

instruction is moving the value of a bit into the carry bit in which case the carry bit is affected

or

unless the instruction is moving a value into the PSW register (which contains all the program

flags).

** Note: In the case of "MOV iram addr,iram addr", the operand bytes of the instruction are

stored

in reverse order. That is, the instruction consisting of the bytes 0x85, 0x20, 0x50 means "Move

the

contents of Internal RAM location 0x20 to Internal RAM location 0x50" whereas the opposite

would be generally presumed.

See Also: MOVC, MOVX, XCH, XCHD, PUSH, POP

8051 Instruction Set: MOVC

Operation: MOVC

Function: Move Code Byte to Accumulator

Syntax: MOVC A,@A+register

Instructions OpCode Bytes Flags

MOVC A,@A+DPTR 0x93 1 None

MOVC A,@A+PC 0x83 1 None

Description: MOVC moves a byte from Code Memory into the Accumulator. The Code

Memory

address from which the byte will be moved is calculated by summing the value of the

Accumulator

with either DPTR or the Program Counter (PC). In the case of the Program Counter, PC is first

incremented by 1 before being summed with the Accumulator.

See Also: MOV, MOVX

P a g e | 21

8051 Instruction Set: MOVX

Operation: MOVX

Function: Move Data To/From External Memory (XRAM)

Syntax: MOVX operand1,operand2

Instructions OpCode Bytes Flags

MOVX @DPTR,A 0xF0 1 None

MOVX @R0,A 0xF2 1 None

MOVX @R1,A 0xF3 1 None

MOVX A,@DPTR 0xE0 1 None

MOVX A,@R0 0xE2 1 None

MOVX A,@R1 0xE3 1 None

Description: MOVX moves a byte to or from External Memory into or from the Accumulator.

If operand1 is @DPTR, the Accumulator is moved to the 16-bit External Memory address

indicated by DPTR. This instruction uses both P0 (port 0) and P2 (port 2) to output the 16-bit

address and data. If operand2 is DPTR then the byte is moved from External Memory into the

Accumulator.

If operand1 is @R0 or @R1, the Accumulator is moved to the 8-bit External Memory address

indicated by the specified Register. This instruction uses only P0 (port 0) to output the 8-bit

address

and data. P2 (port 2) is not affected. If operand2 is @R0 or @R1 then the byte is moved from

External Memory into the Accumulator.

See Also: MOV, MOVC

8051 Instruction Set: MUL

Operation: MUL

Function: Multiply Accumulator by B

Syntax: MUL AB

P a g e | 22

Instructions OpCode Bytes Flags

MUL AB 0xA4 1 C, OV

Description: Multiples the unsigned value of the Accumulator by the unsigned value of the "B"

register. The least significant byte of the result is placed in the Accumulator and the

mostsignificant-byte is placed in the "B" register.

The Carry Flag (C) is always cleared.

The Overflow Flag (OV) is set if the result is greater than 255 (if the most-significant byte is

not

zero), otherwise it is cleared.

See Also: DIV

8051 Instruction Set: NOP

Operation: NOP

Function: None, waste time

Syntax: No Operation

Instructions OpCode Bytes Flags

NOP 0x00 1 None

Description: NOP, as it's name suggests, causes No Operation to take place for one machine

cycle.

NOP is generally used only for timing purposes. Absolutely no flags or registers are affected.

8051 Instruction Set: ORL

Operation: ORL

Function: Bitwise OR

Syntax: ORL operand1,operand2

Instructions OpCode Bytes Flags

ORL iram addr,A 0x42 2 None

P a g e | 23

ORL iram addr,#data 0x43 3 None

ORL A,#data 0x44 2 None

ORL A,iram addr 0x45 2 None

ORL A,@R0 0x46 1 None

ORL A,@R1 0x47 1 None

ORL A,R0 0x48 1 None

ORL A,R1 0x49 1 None

ORL A,R2 0x4A 1 None

ORL A,R3 0x4B 1 None

ORL A,R4 0x4C 1 None

ORL A,R5 0x4D 1 None

ORL A,R6 0x4E 1 None

ORL A,R7 0x4F 1 None

ORL C,bit addr 0x72 2 C

ORL C,/bit addr 0xA0 2 C

Description: ORL does a bitwise "OR" operation between operand1 and operand2, leaving the

resulting value in operand1. The value of operand2 is not affected. A logical "OR" compares

the

bits of each operand and sets the corresponding bit in the resulting byte if the bit was set in

either

of the original operands, otherwise the resulting bit is cleared.

See Also: ANL, XRL

8051 Instruction Set: POP

Operation: POP

P a g e | 24

Function: Pop Value From Stack

Syntax: POP

Instructions OpCode Bytes Flags

POP iram addr 0xD0 2 None

Description: POP "pops" the last value placed on the stack into the iram addr specified. In other

words, POP will load iram addr with the value of the Internal RAM address pointed to by the

current Stack Pointer. The stack pointer is then decremented by 1.

See Also: PUSH

8051 Instruction Set: PUSH

Operation: PUSH

Function: Push Value Onto Stack

Syntax: PUSH

Instructions OpCode Bytes Flags

PUSH iram addr 0xC0 2 None

Description: PUSH "pushes" the value of the specified iram addr onto the stack. PUSH first

increments the value of the Stack Pointer by 1, then takes the value stored in iram addr and

stores

it in Internal RAM at the location pointed to by the incremented Stack Pointer.

See Also: POP

8051 Instruction Set: RET

Operation: RET

Function: Return From Subroutine

Syntax: RET

Instructions OpCode Bytes Flags

P a g e | 25

RET 0x22 1 None

Description: RET is used to return from a subroutine previously called by LCALL or ACALL.

Program execution continues at the address that is calculated by popping the topmost 2 bytes

off

the stack. The most-significant-byte is popped off the stack first, followed by the least-

significantbyte.

See Also: LCALL, ACALL, RETI

8051 Instruction Set: RETI

Operation: RETI

Function: Return From Interrupt

Syntax: RETI

Instructions OpCode Bytes Flags

RETI 0x32 1 None

Description: RETI is used to return from an interrupt service routine. RETI first enables

interrupts

of equal and lower priorities to the interrupt that is terminating. Program execution continues

at the

address that is calculated by popping the topmost 2 bytes off the stack. The most-significant-

byte is

popped off the stack first, followed by the least-significant-byte.

RETI functions identically to RET if it is executed outside of an interrupt service routine.

See Also: RET

8051 Instruction Set: RL

Operation: RL

Function: Rotate Accumulator Left

Syntax: RL A

Instructions OpCode Bytes Flags

RL A 0x23 1 C

P a g e | 26

Description: Shifts the bits of the Accumulator to the left. The left-most bit (bit 7) of the

Accumulator is loaded into bit 0.

See Also: RLC, RR, RRC

8051 Instruction Set: RLC

Operation: RLC

Function: Rotate Accumulator Left Through Carry

Syntax: RLC A

Instructions OpCode Bytes Flags

RLC A 0x33 1 C

Description: Shifts the bits of the Accumulator to the left. The left-most bit (bit 7) of the

Accumulator is loaded into the Carry Flag, and the original Carry Flag is loaded into bit 0 of

the

Accumulator. This function can be used to quickly multiply a byte by 2.

See Also: RL, RR, RRC

8051 Instruction Set: RR

Operation: RR

Function: Rotate Accumulator Right

Syntax: RR A

Instructions OpCode Bytes Flags

RR A 0x03 1 None

Description: Shifts the bits of the Accumulator to the right. The right-most bit (bit 0) of the

Accumulator is loaded into bit 7.

See Also: RL, RLC, RRC

8051 Instruction Set: RRC

P a g e | 27

Operation: RRC

Function: Rotate Accumulator Right Through Carry

Syntax: RRC A

Instructions OpCode Bytes Flags

RRC A 0x13 1 C

Description: Shifts the bits of the Accumulator to the right. The right-most bit (bit 0) of the

Accumulator is loaded into the Carry Flag, and the original Carry Flag is loaded into bit 7. This

function can be used to quickly divide a byte by 2.

See Also: RL, RLC, RR

8051 Instruction Set: SETB

Operation: SETB

Function: Set Bit

Syntax: SETB bit addr

Instructions OpCode Bytes Flags

SETB C 0xD3 1 C

SETB bit addr 0xD2 2 None

Description: Sets the specified bit.

See Also: CLR

8051 Instruction Set: SJMP

Operation: SJMP

Function: Short Jump

Syntax: SJMP reladdr

P a g e | 28

Instructions OpCode Bytes Flags

SJMP reladdr 0x80 2 None

Description: SJMP jumps unconditionally to the address specified reladdr. Reladdr must be

within

-128 or +127 bytes of the instruction that follows the SJMP instruction.

See Also: LJMP, AJMP

8051 Instruction Set: SUBB

Operation: SUBB

Function: Subtract from Accumulator With Borrow

Syntax: SUBB A,operand

Instructions OpCode Bytes Flags

SUBB A,#data 0x94 2 C, AC, OV

SUBB A,iram addr 0x95 2 C, AC, OV

SUBB A,@R0 0x96 1 C, AC, OV

SUBB A,@R1 0x97 1 C, AC, OV

SUBB A,R0 0x98 1 C, AC, OV

SUBB A,R1 0x99 1 C, AC, OV

SUBB A,R2 0x9A 1 C, AC, OV

SUBB A,R3 0x9B 1 C, AC, OV

SUBB A,R4 0x9C 1 C, AC, OV

SUBB A,R5 0x9D 1 C, AC, OV

SUBB A,R6 0x9E 1 C, AC, OV

P a g e | 29

SUBB A,R7 0x9F 1 C, AC, OV

Description: SUBB subtract the value of operand and the Carry Flag from the value of the

Accumulator, leaving the resulting value in the Accumulator. The value operand is not affected.

The Carry Bit (C) is set if a borrow was required for bit 7, otherwise it is cleared. In other

words,

if the unsigned value being subtracted is greater than the Accumulator the Carry Flag is set.

The Auxillary Carry (AC) bit is set if a borrow was required for bit 3, otherwise it is cleared.

In

other words, the bit is set if the low nibble of the value being subtracted was greater than the

low

nibble of the Accumulator.

The Overflow (OV) bit is set if a borrow was required for bit 6 or for bit 7, but not both. In

other

words, the subtraction of two signed bytes resulted in a value outside the range of a signed byte

(-

128 to 127). Otherwise it is cleared.

See Also: ADD, ADDC, DEC

8051 Instruction Set: SWAP

Operation: SWAP

Function: Swap Accumulator Nibbles

Syntax: SWAP A

Instructions OpCode Bytes Flags

SWAP A 0xC4 1 None

Description: SWAP swaps bits 0-3 of the Accumulator with bits 4-7 of the Accumulator. This

instruction is identical to executing "RR A" or "RL A" four times.

See Also: RL, RLC, RR, RRC

8051 Instruction Set: Undefined Instruction

Operation: Undefined Instruction

Function: Undefined

Syntax: ???

P a g e | 30

Instructions OpCode Bytes Flags

??? 0xA5 1 C

Description: The "Undefined" instruction is, as the name suggests, not a documented

instruction.

The 8051 supports 255 instructions and OpCode 0xA5 is the single OpCode that is not used by

any

documented function. Since it is not documented nor defined it is not recommended that it be

executed. However, based on my research, executing this undefined instruction takes 1

machine

cycle and appears to have no effect on the system except that the Carry Bit always seems to be

set.

Note: We received input from an 8052.com user that the undefined instruction really has a

format

of Undefined bit1,bit2 and effectively copies the value of bit2 to bit1. In this case, it would be

a

three-byte instruction. We haven't had an opportunity to verify or disprove this report, so we

present it to the world as "additional information."

Note: It has been reported that Philips 8051 model P89C669 uses instruction prefix 0xA5 to let

the

user access a different (extended) SFR area.

8051 Instruction Set: XCH

Operation: XCH

Function: Exchange Bytes

Syntax: XCH A,register

Instructions OpCode Bytes Flags

XCH A,@R0 0xC6 1 None

XCH A,@R1 0xC7 1 None

XCH A,R0 0xC8 1 None

XCH A,R1 0xC9 1 None

XCH A,R2 0xCA 1 None

XCH A,R3 0xCB 1 None

XCH A,R4 0xCC 1 None

P a g e | 31

XCH A,R5 0xCD 1 None

XCH A,R6 0xCE 1 None

XCH A,R7 0xCF 1 None

XCH A,iram addr 0xC5 2 None

Description: Exchanges the value of the Accumulator with the value contained in register.

See Also: MOV

8051 Instruction Set: XCHD

Operation: XCHD

Function: Exchange Digit

Syntax: XCHD A,[@R0/@R1]

Instructions OpCode Bytes Flags

XCHD A,@R0 0xD6 1 None

XCHD A,@R1 0xD7 1 None

Description: Exchanges bits 0-3 of the Accumulator with bits 0-3 of the Internal RAM address

pointed to indirectly by R0 or R1. Bits 4-7 of each register are unaffected.

See Also: DA

8051 Instruction Set: XRL

Operation: XRL

Function: Bitwise Exclusive OR

Syntax: XRL operand1,operand2

Instructions OpCode Bytes Flags

P a g e | 32

XRL iram addr,A 0x62 2 None

XRL iram addr,#data 0x63 3 None

XRL A,#data 0x64 2 None

XRL A,iram addr 0x65 2 None

XRL A,@R0 0x66 1 None

XRL A,@R1 0x67 1 None

XRL A,R0 0x68 1 None

XRL A,R1 0x69 1 None

XRL A,R2 0x6A 1 None

XRL A,R3 0x6B 1 None

XRL A,R4 0x6C 1 None

XRL A,R5 0x6D 1 None

XRL A,R6 0x6E 1 None

XRL A,R7 0x6F 1 None

2.2 Different Types Of Addressing Modes In 8051.

Addressing:-The CPU can access data in a register or in memory or be provided as an

immediate

value. These various ways of accessing data are called addressing modes.

The 8051 provides a total of five distinct addressing modes.

They are as follows:-

P a g e | 33

1) Immediate addressing modes.

2) Register addressing modes.

3) Direct addressing modes.

4) Register indirect - addressing mode.

5)Indexed addressing mode.

Let us study different modes with selective examples:-

1) Immediate Addressing mode:-

In This addressing mode, the source operated is a constant i.e. immediate

data. Note that the immediate data must be preceded by the pound sign"#".

Example:-

MOV A, # 82H ; load 82H into A

MOV R4, # 100 ; load the decimal value 100 in to R4

MOV B, # 40H ; load 40H in to B

MOV P1, # 55H ; load 55H directly to port 1

MOV DPTR , # 4521 H ; DPTR =4521 H

2) Register - Addressing Mode:-

Register addressing mode involves the use of registers to hold data to be

manipulated.

Example:-

MOV A,RO ;copy the contents of R0 in to A

MOV R2,A ;copy the contents of A in to R2

ADD A,R5 ;Add contents of R5 to A

MOV R7,DPL ;load R7 with contents of DPL

3) Direct Addressing mode:-

P a g e | 34

In direct addressing mode the data is in a RAM Memory location whose

addressing is known and this address is given as a part of the instruction.

Although the entire 128 bytes of RAM com be addressed Using direct

addressing mode

It is most often used to access RAM locations 30-7FH

Example:-

MOV R0, 40H ; save content of RAM location 40H in Ro

MOV 7FH, A ; save content of A in to RAM location 7FH

MOV A,07H ;same as move A1 R7 is copies data in R7 to A

MOV 03H, 04H ; it copies data in R4 to R3

4) Indirect addressing mode:-

In the register indirect addressing mode a register is used as a pointer to the data

.only register R0 and R1 are used for internal RAM indirect Data transfer.

When they hold the address of Rom locations they must be preceded by the “@”

symbol.

Example :-

MOV ,A, @R0 ;move contents of Ram location whose address is help

By R0 in to A

MOV @ R1 ,B ;move contents of B in to RAM location whose Address is

help by R1.

5) Indexed addressing mode :-

Indexed addressing mode is widely used in accessing data elements of look-up table

entries located in the program Rom space of the 8051.

Example :-

P a g e | 35

MOV A, @ A + DPTR

MOV A, @ A+ PC

2.3 INTERRUPT 8051 MICROCONTROLLER

The most powerful and important features are interrupts in 8051 microcontroller. In most of

the

real-time processes, to handle certain conditions properly, the actual task must be halt for some

time – it takes required action – and then must return to the main task. For executing such type

of

programs, interrupts are necessary. It entirely differs from the polling method wherein the

processor must check sequentially each device and ask whether the service is required or not

while

consuming more processor time.

Interrupts in 8051 microcontroller

Interrupts in 8051 microcontroller are more desirable to reduce the regular status checking of

the

interfaced devices or inbuilt devices. Interrupt is an event that temporarily suspends the main

program, passes the control to a special code section, executes the event-related function and

resumes the main program flow where it had left off.

Interrupts are of different types like software and hardware, maskable and non-maskable, fixed

and

vector interrupts, and so on. Interrupt Service Routine (ISR) comes into the picture when

interrupt

occurs, and then tells the processor to take appropriate action for the interrupt, and after ISR

execution, the controller jumps into the main program.

2.3.1 TYPES OF INTERRUPTS IN 8051 MICROCONTROLLER

The 8051 microcontroller can recognize five different events that cause the main program to

interrupt from the normal execution. These five sources of interrupts in 8051are:

1. Timer 0 overflow interrupt- TF0

2. Timer 1 overflow interrupt- TF1

3. External hardware interrupt- INT0

4. External hardware interrupt- INT1

P a g e | 36

5. Serial communication interrupt- RI/TI

The Timer and Serial interrupts are internally generated by the microcontroller, whereas the

external interrupts are generated by additional interfacing devices or switches that are

externally

connected to the microcontroller. These external interrupts can be edge triggered or level

triggered.

When an interrupt occurs, the microcontroller executes the interrupt service routine so that

memory

location corresponds to the interrupt that enables it. The Interrupt corresponding to the memory

location is given in the interrupt vector table below.

Interrupt vector Table

2.3.2 INTERRUPT STRUCTURE OF 8051 MICROCONTROLLER

Upon ‘RESET’ all the interrupts get disabled, and therefore, all these interrupts must be

enabled by

a software. In all these five interrupts, if anyone or all are activated, this sets the corresponding

interrupt flags as shown in the figure. All these interrupts can be set or cleared by bit in some

special function register that is Interrupt Enabled (IE), and this in turn depends on the priority,

which is executed by IP interrupt priority register.

Interrupt structure of 8051

microcontroller

Interrupt Enable (IE) Register: This register is responsible for enabling and disabling the

interrupt. It is a bit addressable register in which EA must be set to one for enabling interrupts.

The

corresponding bit in this register enables particular interrupt like timer, external and serial

inputs.

In the below IE register, bit corresponding to 1 activates the interrupt and 0 disables the

interrupt.

P a g e | 37

Interrupt Enable (IE) Register

Interrupt Priority Register (IP): It is also possible to change the priority levels of the interrupts

by setting or clearing the corresponding bit in the Interrupt priority (IP) register as shown in

the

figure. This allows the low priority interrupt to interrupt the high-priority interrupt, but

prohibits

the interruption by another low-priority interrupt. Similarly, the high-priority interrupt cannot

be

interrupted. If these interrupt priorities are not programmed, the microcontroller executes in

predefined manner and its order is INT0, TF0, INT1, TF1, and SI.

IP register

TCON Register: In addition to the above two registers, the TCON register specifies the type of

external interrupt to the 8051 microcontroller, as shown in the figure. The two external

interrupts,

whether edge or level triggered, specify by this register by a set, or cleared by appropriate bits

in it.

And, it is also a bit addressable register.

Timers in 8051 microcontroller

Timer is an important application in Embedded systems, it maintains the timing of an operation

in

sync with a system clock or an external clock. Timer has so many applications such as measure

time generating delays, they can also be used for generating baud rates.

A normal delay function might be using for loop iterating for a few 1000 cycles. But these

types of

delays need not be accurate and fundamentally it is not a good programming practice. So,

TIMER/COUNTER is a software designed to count the time interval between events. It counts

the

cycle of the peripheral clock or an externally-supplied clock.

Timer in 8051

The AT89S8253 has three timers/counters marked T0, T1 and T2. Timers T0 and T1

completely

fall under the 8051 Standard. Their main purpose is to measure time and count external events.

Besides, they are used for generating clock pulses that can be used in serial communication, so

called Baud Rate.

The microcontroller can also generate/measure the required time delays by running loops, but

the

timer/counter relieves the CPU from that redundant and repetitive task, allowing it to allocate

maximum processing time for other tasks.

P a g e | 38

Timer T2

Timer 2 is a 16-bit timer/counter installed only in new versions of the 8051 family. Unlike

timers

T0 and T1, this timer consists of 4 registers. Two of them, TH2 and TL2, are connected serially

in

order to form a larger 16-bit timer register. Like timers 0 and 1, it can operate either as a timer

or as

an event counter. Another two registers, RCAP2H and RCAP2L, are also serially connected

and

operate as capture registers. They are used to temporarily store the contents of the counter

register.

The main advantage of this timer compared to timers 0 and 1 is that all read and swap operations

are easily performed using one instruction. Similar to T0 and T1, it has four different modes of

operation,

 Timer T2 in Capture mode

 Timer T2 in auto-reload mode

 Timer T2 as a baud rate generator

 Timer T2 as a clock generator

Register configuration for the Timer

TCON

TCON register is also one of the registers whose bits are directly in control of timer operation.

Only 4 bits of this register are used for this purpose, while rest of them is used for interrupt

control.

 TF1 bit is automatically set when the Timer 1 overflow.

 TR1 bit enables the Timer 1.

o 1 – Timer 1 is enabled.

o 0 – Timer 1 is disabled.

 TF0 bit is automatically set when the Timer 0 overflow.

 TR0 bit enables the timer 0.

o 1 – Timer 0 is enabled.

o 0 – Timer 0 is disabled.

TMOD

This register contains bits controlling the operation of timer 0 & 1. To select the operating

mode

and the timer/counter operation of the timers we use TMOD register. Timer 0 and timer 1 are

two

timer registers in 8051. Both of these registers use the same register called TMOD to set various

timer operation modes.

 TMOD is an 8-bit register.

 The lower 4 bits are for Timer 0.

P a g e | 39

 The upper 4 bits are for Timer 1.

 In each case,

o The lower 2 bits are used to set the timer mode.

o The upper 2 bits to specify the operation.

Bits of this register have the following function:

 GATE enables and disables Timer by means of a signal brought to the INTx pin:

o 1 – Timer operates only if the INTx bit is set.

o 0 – Timer operates regardless of the logic state of the INTx bit.

 C/T selects pulses to be counted up by the timer/counter:

o 1 – Timer counts pulses brought to the Tx(Timer) pin.

o 0 – Timer counts pulses from the internal oscillator.

 M1, M0 These two bits select the operational mode Timer.

TIMER MODE 0 (13 bit mode)

MODE 0 is a 13 bit mode. In this mode the THx acts as an 8 bit timer & TLx acts as a 5 bit

timer.

The TLx counts up to 31 & then resets to 00 & increment THx by 1. Suppose you load 0 in the

timer then the timer will overflow in 2^13 i.e. 8192 machine cycles.

TIMER MODE 1 (16 bit mode)

MODE 1 is similar to MODE 0 except it is a 16 bit mode. In this mode the THx & TLx both

acts as

an 8 bit timer. The TLx counts upto 255 & then resets to 00 & increment THx by 1. Since this

is a

full 16 bit timer we can get maximum of 2^16 i.e. 65536 Machine cycle before the timer

overflows.

TIMER MODE 2 (8 bit mode)

In this Mode TLx acts as the timer & THx contains the Reload Value i.e. THx is loaded in TLx

everytime it overflows i.e. when TLx reaches 255 & is incremented then instead of resetting it

to 0

it will be reset to the value stored in THx. This mode is very commonly used for generating

baud

rate used in serial communication.

TIMER MODE 3 (Split Mode)

Timer mode “3” is known as split-timer mode. Timers 0 and 1 may be programmed to be in

mode

0, 1, or 2 independently of a similar mode for the other timer. But in mode 3 the timers do not

operate independently, if mode 3 is chosen for timer 0. When Timer 0 is placed in mode 3, it

essentially becomes two separate 8-bit timers. Timer 0 is TL0 and Timer 1 is TH0. Both timers

count from 0 to 255 and overflow back to 0. All the bits that are related to Timer 1 will now be

tied

to TH0. Now placing timer 1 in mode 3 causes it to stop counting, the control bit TR1 and the

Timer 1 flag TF1 are now used by timer 0. So even if you use Timer 1 in Mode 0, 1 or 2 you

won’t

be able to START or STOP the timer & no INTERRUPT will be generated by Timer 1. The

real

Timer 1 will be incremented every machine cycle no matter what.

Example :

 TMOD = 00000001, mode 1 of timer 0 is selected.

P a g e | 40

 TMOD = 00100000, mode 2 of timer 1 is selected.

 TMOD = 00010010, mode 2 of timer 0, and mode 1 of timer 1 are selected.

QUESTIONS:

MULTIPLE CHOICE QUESTIONS:

1)which of following is intruppt of 8051:

 (a) timer o (b) timer 1

 (c) internal hardware (d)all

2) which of following is a part instruction:

 (a)opcode (b) register

 (c) intruppt (d) all of these above

SHORT ANSWER TYPES QUESTIONS:

1) What is intruppt?

2) IP stands for ……………..

3) What do you mean by addressing mode?

4) What is function of timer?

5) Write all types of addressing modes.

LONG ANSWER TYPES QUESTIONS:

 1) Explain in detail addressing modes 8051microprocessor.

 2) Explain in detail instructions of 8051 microprocessor.

P a g e | 41

P a g e | 1

MICROCONTROLLERS

LEARNING OBJECTIVES:

 Concept of assembler directives.

 Study of assembler operation.

 To know about debugger.

CHAPTER-3(ASSEMBLY PROGRAMMING FOR MICROCONTROLLER)

3.1. ASSEMBLER DIRECTIVES

Microcontroller 8051 has only one 8-bits data type and the size of each register is also 8 bits.

The

job of the programmer is to break down data larger than 8 bits [00 to FFH, or 0 to 255 in

decimal]

to be processed by the CPU. The data type used by the 8051 can be positive or negative.

DB [Define Byte]:

The DB directive is used to define the 8-bit data and the numbers can be in decimal,binary, hex

or

ASCII formats. For decimal, the "D" after the decimal number is optional, but using "B"

[binary]

and "H" [hexadecimal] is required. The assembler will convert the numbers in hex. To indicate

ASCII, simply put it in quotation marks 'like this'. The assembler will assign the ASCII code

for

the numbers or characters automatically. The DB directive is the only directive that can be used

to

define ASCII strings larger than two characters. It should be used for all ASCII data definitions.

ORG 300H

DATA1: DB 30 ;Decimal number [1E in HEX]

DATA2: DB 01010101B ;Binary [55 in HEX]

DATA3: DB 40H ; HEX number

ORG 500H

DATA4: DB "2482" ;ASCII Numbers

DATA5: DB "My name is Ayesha Imtiaz" ;ASCII Characters

Either single or double quotes can be used around ASCII strings. Can be useful for strings,

which

contain a single quote such as "O'Really". DB is also used to allocate memory in byte-sized

chunks.

3.2 Assembler Directives:

The following Assembler directives are widely used in 8051 Assembly language programming.

P a g e | 2

 ORG [Origin]:

The ORG directive is used to indicate the beginning of the address. The number

that comes after ORG can be either in HEX or in decimal. If the number is not followed by 'H',

it is

decimal and the assembler will convert it into hex. Some assemblers use ".ORG" [notice the

dot]

instead of "ORG" for the origin directive. For tha you need to check your assembler.

 EQU [Equate]:

EQU is used to define a constant without occupying a memory location. The

EQU directive does not set aside storage for a data item but associates a constant value with a

data

label so that when the label appears in the program, its constant value will be substituted for

the

label. Here uses EQU for the counter constant ans then the constant is used to load the R4

register.

COUNT EQU 22

....

MOV R4,#COUNT

After executing the instruction "MOV R4,#COUNT", the register R4 will be loaded with the

value

22 [# sign indicates it is a value, notice it].

3.2.1 What is the advantage of using EQU?

The answer is that, lets say in a program there is a constant value [a fixed value] used in many

different places in the program, and the programmer wants to change its value through out the

entire program. By the use of EQU, a programmer can change all valves at once and the

assembler

will change all of it occurrences, rather than search the entire program and to change the value

one

by one to fine every occurrence, just change the constant value followed by EQU results

changing

the all occurrences at once.

 END Directive:

END directive pseudocode is very important. END indicates to the assemblere the

end of the source [asm] file. The END directive is the last line of an 8051 program. In assembly

language programming anything after the END directive is ignored by the assembler. Some

assembler uses ".END" [notice the dot] instead of "END"

3.3 Labels in Assembly Language Programming and its Rules:

Programmer can make a program easier to read and maintain by choosing label names that are

meaningful. There are several rules that names must follow. First, each label name must be

unique.

The names used for labels in assembly language programming consists of alphabetic letters in

both

upper and lower case, the digits 0 through 9, and the special characters question mark [?],

period

[.], at [@], underline [_], and dollar sign [$]. The first character of the label must be an

alphabetic

character, it cannot be a number. Every assembler has some reserved words which must not be

used as labels in the program. These reserve words are the mnemonics for the instructions e.g.

like

"MOV", "DJNZ", "MUL" and "ADD" are reserved as these are the instruction mnemonics.

P a g e | 3

3.4 DEBUGGER

The Crossware 8051 debugger downloads and runs your program on an 8051 target board.

It shares a common user interface with the simulator and many of the simulator and debugger

features are identical.

The debugger can be run from the debug menu as shown on the left, by clicking on items in

the

debugger tool bar or by using the keyboard accelerator keys.

The debugger requires a connection to the target board and this is provided either by a debug

monitor which runs on the target board and communicates with the PC via a serial link or, for

chips

such as those from Silicon Laboratories that have integrated debugging hardware, the

manufacturers' debugger interface.

Take a look at some of the tutorials videos to see the debugger in action.

The debugger shares the following features with the simulator:

 Multiple memory views

 Multiple watch windows

 Multiple register views with register tooltips

 Disassembly view

 Complex heirarchical source level drag-and-drop breakpoints

 Machine level breakpoints

 Call stack view

 Variable tooltips

 Multiple application debugging

The following features are specific to the debugger:

 Downloading into memory on the target chip

 Hardware breakpoints in flash (Silicon Laboratories chips)

 Unlimited software execution breakpoints in RAM and flash memory (debug monitor)

QUESTIONS:

MULTIPLE CHOICE QUESTIONS:

1)which of following is directives of 8051:

 (a) timer o (b) timer 1

 (c) ORG (d)all

P a g e | 4

2) which of following is a part of debugger:

 (a)tooltips (b) register

 (c) intruppt (d) all of these above

SHORT ANSWER TYPES QUESTIONS:

1) What is directives?

2) EQU stands for ……………..

3) What do you mean by debugger?

4) What is function of timer?

5) Write all types of assembler directives.

LONG ANSWER TYPES QUESTIONS:

 1) Explain in detail assembler directives of 8051microprocessor.

 2) Explain in detail debugger of 8051 microprocessor.

MICROCONTROLLERS

LEARNING OBJECTIVES:

 Concept of PIC microcontroller.

.

CHAPTER-5(INTRODUCTION OF PIC MICROCONTROLLER)

5.1. INTRODUCTION

Microcontrollers give you a fantastic way of creating projects. A PIC microcontroller is a

processor

with built in memory and RAM and you can use it to control your projects (or build projects

around it). So, it saves you building a circuit that has separate external RAM, ROM and

peripheral

chips.

What this really means for you is that you have a very powerful device that has many useful

built

in modules e.g.

 EEPROM.

 Timers.

 Analogue comparators.

 UART.

Even with just these four modules (note these are just example modules - there are more) you

can

make up many projects e.g.:

► Frequency counter - using the internal timers and reporting through UART (RS232) or

output to LCD.

► Capacitance meter - analogue comparator oscillator.

► Event timer - using internal timers.

► Event data logger -capturing analogue data using an internal ADC and using the internal

► EEPROM for storing data (using an external I2C for high data storage capacity.

► Servo controller (Control through UART) - using the internal PWM module or using a

software created PWM.

The PIC Micro is one of the most popular microcontrollers and in case you were wondering

the

difference between a microprocessor and a microcontroller is that a microcontroller has an

internal

bus with in built memory and peripherals.

In fact the 8 pin (DIL) version of the 12F675 has an amazing number of internal peripherals.

These

are:

 Two timers.

 One 10bit ADC with 4 selectable inputs.

 An internal oscillator (or you can use an external crystal).

 An analogue comparator.

 1024 words of program memory.

 64 Bytes of RAM.

 128 Bytes of EEPROM memory.

 External interrupt (as well as interrupts from internal peripherals).

 External crystal can go up to 20MHz.

 ICSP : PIC standard programming interface.

And all of these work from within an 8 pin DIL package!

In the mid-range devices the memory space ranges from 1k to 8k (18F parts have more) - this

does

not sound like a lot but the processor has an efficient instruction set and you can make useful

projects even with 1k e.g. LM35 temperature sensing project that reports data to the serial port

easily fits within 1k.

Features

In fact a PIC microcontroller is an amazingly powerful fully featured processor with internal

RAM,

EEROM FLASH memory and peripherals. One of the smallest ones occupies the space of a

555

timer but has a 10bit ADC, 1k of memory, 2 timers, high current I/O ports a comparator a watch

dog timer... I could go on as there is more!

Programming

One of the most useful features of a PIC microcontroller is that you can re-program them as

they

use flash memory (if you choose a part with an F in the part number e.g. 12F675 not 12C509).

You

can also use the ICSP serial interface built into each PIC Microcontroller for programming

and even do programming while it's still plugged into the circuit!

You can either program a PIC microcontroller using assembler or a high level language and I

recommend using a high level language such as C as it is much easier to use (after an initial

learning curve). Once you have learned the high level language you are not forced to use the

same

processor e.g. you could go to an AVR or Dallas microcontroller and still use the same high

level

language.

Input / Output - I/O

A PIC Microcontroller can control outputs and react to inputs e.g. you could drive a relay or

read

input buttons.

With the larger devices it's possible to drive LCDs or seven segment displays with very few

control

lines as all the work is done inside the PIC Micro.

P a g e | 3

Comparing a frequency counter to discrete web designs you'll find two or three chips for the

microcontroller design and ten or more for a discrete design. So using them saves prototype

design

effort as you can use built in peripherals to take care of lots of the circuit operation.

Many now have a built in ADC so you can read analogue signal levels so you don't need to add

an

external devices e.g. you can read an LM35 temperature sensordirectly with no interface logic.

Peripherals

The PIC microcontroller has many built in peripherals and this can make using them quite

daunting

at first which is why I have made this introductory page with a summary of each major

peripheral

block.

At the end is a short summary of the main devices used in projects shown on this site.

The best way to start is to learn about the main features of a chip and then begin to use each

peripheral in a project. I think learning by doing is the best way.

PIC

microcontroller

Feature

PIC microcontroller

feature description

Flash memory Re-programmable program storage.

RAM Memory storage for variables.

EEPROM

Long term stable memory : Electrically

Erasable Programmable Read

Only Memory.

I/O ports High current Input/Output ports (with pin

direction change).

Timers/Counters Typically 3.

USART Built in RS232 protocol (only needs level

translator chip).

CCP Capture/Compare/PWM module.

SSP I2C and SPI Interfaces.

Comparator An analogue comparator and internal

P a g e | 4

voltage reference.

ADC Analogue to digital converter.

PSP Parallel Slave Port (for 8 bit

microprocessor systems).

LCD LCD interface.

Special features ICSP,WDT,BOR,POR,PWRT,OST,SLEEP

ICSP Simple programming using In Circuit

Serial Programming.

Note:these are some of the main features

(some chips have all of these and some don't).

Flash memory

This is the program storage area and gives you the most important benefit for using a PIC

microcontroller - You program the device many times. Since when does anyone get a program

right first time ?

Devices used in projects on this site can be re-programmed up to 100,000 times (probably

more) as

they use Flash memory - these have the letter F in the part name. You can get cheaper (OTP)

devices but these are One-Time-Programmable; once programmed you can't program it again!

ICSP

In Circuit Serial Programming (ICSP) is the next most important benefit. Instead of transferring

your chip from the programmer to the development board you just leave it in the board. By

arranging the programming connections to your circuit correctly you won't need to remove the

chip!

You can re-program the device while it's still in the circuit so once your programmer is setup

you

can leave it on the bench and test your programs without moving the chip around and it makes

the

whole process much easier.

I/O Ports

Input / Output ports let you communicate with the outside world so you can control leds, LCDs

or

just about anything with the right interface. You can also set them as inputs to gather

information.

P a g e | 5

Pin direction

Most PIC microcontroller pins can be set as an input or and output and this can be done on the

fly

e.g. for a dallas 1 wire system a pin can be written to generate data and read at a later stage.

The

TRIS register controls the I/O direction and setting a bit in this register to zero sets the pin

as output while setting it as one sets the pin as input.

This allows you to use a pin for multiple operations e.g. the Real Time clock project uses RA0,

the

first pin of PORTA, to output data to a seven segment display and at a later point in the program

read the analogue value as an input.

Current

The PIC I/O ports are high current ports capable of directly driving LEDs (up to 25ma output

current) - the total current allowed usually ~200mA this is often for the whole chip (or specified

for

several ports combined together).

Timer / Counters

Each PIC microcontroller has up to three timers that you can either use as a timer or a counter

(Timer 1 & 2) or a baud clock (Timer 2).

Timer 0

The original timer: Timer 0 was the first timer developed and you can find it in all the earliest

devices e.g. 16F84 up to the most current e,g, 16F877A.

It is an 8 bit timer with an 8 bit prescaler that can be driven from an internal (Fosc/4) or external

clock. It generates an interrupt on overflow when the count goes from 255 to zero.

Timer 0 always synchronizes the input clock (when using external clock).

Note: You can read and write timer 0 but you can not read the prescaler.

Note: The prescaler changes its effect depending on whether it is a timer prescaler or a watch

dog

prescaler - so the same prescaler setting may prescale by 2 or by 1 depending on its use!

Timer 1

This is a 16 bit timer that generates an overflow interrupt when it goes from 65535 to zero. It

has

an 8 bit programmable prescaler and you can drive it from the internal clock (Fosc/4) or an

external pin.

To eliminate false triggering it also has an optional input synchronizer for external pin input.

This timer can be used in sleep mode and will generate a wakeup interrupt on overflow.

Timer 1 is also read by the CCP module to capture an event time.

Note: Using this timer in sleep mode will use more current.

P a g e | 6

In addition it can be used to drive a low power watch crystal. This is something that sounds

good

but I don't recommend you do it as watch crystals are extremely difficult to drive correctly.

You

should only use it if you are going to make a pcb and follow all the guidelines in making it

noise

free. I used a DS1307 in the Real Time clock project which drives the crystal directly but even

this

is difficult to get operating accurately.

Timer 2

This is an 8 bit timer with an 8 bit prescaler and an 8 bit postscaler. It takes its input only from

the

internal oscillator (Fosc/4).

This timer is used for the timebase of a PWM when PWM is active and it can be software

selected

by the SSP module as a baud clock.

It also has a period register that allows easy control of the period. When timer 2 reaches the

PR2

register value then it resets. This saves having to check the timer value in software and then

reset

the timer and since it is done in hardware the operation is much faster - so you can generate

fast

clocks with periods that are multiples of the main clock.

USART

The USART is a useful module and saves having to code up a software version so it saves

valuable

program memory. You can find more information on RS232here and how to make it

work. Look here for pin outs.

All you need to interface it to a PC serial port is a MAX232 chip (or equivalent).

Note: An equivalent MAX232 chip is the SP202ECP that has the same pinout as the MAX232

but

lets you use 100nF capacitors - so you don't need the large 1uF caps.

Baud Rates

You have to be careful using the baud rates as they depend on the main clock in use and normal

oscillator values in general do not fit very well with 'real' baud rates.

There is a table of baud rates in microchip data sheet DS33023A which indicates the expected

percentage error for a specific clock rate and in general the higher the main clock the lower the

error.

You sometimes have to play around with the register settings to get a better fit with your clock

rate

and the baud rate you want. An example is for an 8MHz clock - if you use BRGH=1 and an

8MHz

clock (see the 16F88 datasheet) you get accurate baud rates up to 38.4kbaud. You have to force

this to work e.g. in mikroC the built in USART routines use BRGH=0 so at 8MHz the baud

rate is

only accurate to 9.6kbaud.

P a g e | 7

If you want a super-accurate baud rate the best way is to use a clock crystal that ends up giving

you

that baud rate i.e. work back through the baud rate equations to find the crystal you need.

CCP

The Capture/Compare/PWM module has three modes of operation:

 Capture - Capture the time of an event.

 Compare - Generate an output when Timer 1 reaches a value.

 PWM - Pulse Width Modulation.

Capture

Capture mode is used to capture the value of Timer 1 when a signal at the CCP pin goes high

(or

low depending on how the CCP is set up). The CCP can accurately capture the arrival time of

a

signal at the CCP pin so it can be used for pulse time measurement.

Compare

Compare mode is used to generate an output when Timer 1 reaches a value you put into

CCPR1. One special event trigger mode lets you start the ADC when the compare mode

triggers.

PWM

PWM gives you one Pulse Width Modulation output with 10 bit resolution and with no

software

overhead - once started it operates all by itself unless you want to change the duty cycle.

It uses Timer 2 to define its operation using Timer 2 period register to define the frequency of

the

PWM.

Note: The duty cycle is not a percentage it is the number of periods of the PWM clock that the

output is high!

SSP

The Synchronous Serial Port lets you communicate with devices that use either the SPI (Serial

Peripheral Interface) or I2C (Inter IC communication) protocols. Note that for full Master mode

I2C operation you need to choose a PIC device that has the MSSP device (Master Synchronous

Serial Port).

SPI and I2C are shared so you can only use one at a time (or you could use the I2C bit banged

routines in the Real Time Clock project to have both at the same time).

You can find a project that uses I2C here and you can find more information on I2C here.

P a g e | 8

Comparator and comparator voltage reference

The comparator is module that has two analogue comparators which can be set up in one of 8

different ways. Either digital or analogue inputs can be compared to reference voltages.

In one mode an internally generated voltage reference is used as an input to both comparators

and

in the same mode multiplexing lets you monitor up to four different input pins.

You can even send the output of the comparator to a pin so that it is used independently from

the

microcontroller e.g. in a circuit where you need a comparator you don't need an extra chip!

The analogue level must be between Vdd and Vss as protection diodes won't allow anything

else.

The module will generate an interrupt if the comparator output changes.

You can use it in sleep mode and the interrupt will wake it up.

The source impedance of the analogue signal must be smaller than 10k.

ADC

The single 10 bit Analogue to Digital Converter can have up to 8 inputs for a device

multiplexed

from input pins.

The ADC can be used during sleep but you have to use the RC clock mode. One benefit of this

is

that there will be no digital switching noise so you will get better conversion accuracy.

For the 16F877A you can not just choose to use an analogue input if you feel the need as there

are

only a specific and limited number of ways that the analogue input pins can be enabled. It is

best

to start with AN0 and add more as necessary - see the datasheet for which analogue inputs can

be

enabled e.g. if you started a design using only AN5 you would find that you may have to enable

a

few more analogue inputs as well!

The 16F675 can measure 4 analogue input pins!

PSP

The Parallel Slave Port lets you to connect the PIC microcontroller directly into a

microprocessor

system. It provides an 8 bit read/write data bus and RD (read) WR (write) and CS (chip select)

inputs - all active low.

This will let you add a PIC microcontroller to a system so that the PIC microcontroller can be

treated as a memory mapped peripheral. It will let the microcontroller behave just as though it

was

another microprocessor building block e.g. some memory or ram but in this case you have full

control over exactly what the building block is i.e. you can re-program the PIC microcontroller

to

do just about anything.

This provides an easy route to adding a PIC microcontroller to an 8 bit system that already

exists.

P a g e | 9

LCD

The LCD interface lets you directly interface to an LCD saving you having to use an LCD

module

such as the HD44780. I have not used this feature as it is another commercial requirement

where

removing a chip (HD44780) saves money in a production run. I think it is capable of driving a

graphic LCD.

Special Features

ICSP In Circuit Serial

Programming

click here (jumps to ICSP

section).

WDT Watch dog timer This is a software error

protector.

BOR Brown Out reset

This detects if the power

supply dips slightly and resets

the device if so.

POR Power on reset

This starts

microcontroller initialization.

PWRT PoWeR up Time A time delay to let Vdd rise.

OST Oscillator start up

timer

Wait for 1024 cycles after

PWRT.

SLEEP

PIC

microcontroller

sleepmode

Enter low power mode.

WDT

If your software goes haywire then this timer resets the processor. To stop the reset the well

behaved software must periodically issue the CLRWDT instruction to stop a resert. The WDT

runs using its own oscillator. It runs during sleep and shares Timer 0 prescaler.

POR

Power On Reset starts PIC microcontroller initialization when it detects a rising edge on

MCLR.

PWRT

If you enable this then 72ms after a POR the PIC microcontroller is started.

P a g e | 10

OST

Oscillator Startup Timer delays for 1024 oscillator cycles after PWRT (if PWRT is enabled)

ensuring that the oscillator has started and is stable. It is automatic and only used for crystal

oscillator modes and is active after POR or wake from sleep.

SLEEP

Sleep mode (or low power consumption mode) is entered by executing the 'SLEEP' command.

The

device can wake from sleep caused by an external reset, Watch Dog Timer timeout, INT pin

RB

port change or peripheral interrupt.

Project device overview

This site mainly uses three PIC devices out of the hundreds of different chips that microchip

produces. This does not sound like a lot but you can use the devices in almost any project and

they

have so many built in peripherals that you can make hundreds of projects with them.

The other microchip devices are all useful in different situations - perhaps they have more

memory

or different peripherals - this is useful if you want to tailor your designs to the system you build

-

but probably more useful in a commercial environment where every cent counts in a production

run.

All three devices are extremely powerful and the main difference is that they have different

numbers of pins and memory size.

Note: There are differences in using the devices i.e. there are some registers that are different

but in

the generally you can interchange them - this is made easier using a high level language.

The devices used in this site are:

PIC

microcontroller

Device

PIC

microcontroller

No. Pins

PIC

microcontroller

Flash memory

WORDS

12F675 8 1k

16F88 18 4k

16F877A 40 8k

Note : When looking at the microchip site the memory size is kwords - ignore kbytes - you

need

the kword size as this is what each instruction occupies - the kbyte size is for comparison to

other

P a g e | 11

types of micros (probably). But the microcontroller data bus is 8 bits wide so it is an 8 bit

microcontroller (different program memory and data memory due to using Harvard

architecture).

(Note: that all of them have the letter F in - this means it is a Flash re-programmable part - don't

go

and buy a part with O in as its OTP - programmable only once! - only do that if you are really

really sure it's the final design).

PIC Microcontroller Flash Memory size

You may think that 1k or even 8k is so tiny that it won't be useful but each PIC microcontroller

uses RISC (Reduced Instruction Set Computing) which simply means that it has a cleverly

arranged instruction set that only has a few instructions. The mid range parts have 35

instructions.

If you use the high level language as recommended in this site then you won't need to be too

aware

of the instruction set it just means you can do a lot with a small amount of memory. Most of

the

projects on this site although they are fully working projects fit within 2k words!

Note: If you need more memory you can always move to the 18F series of PIC

microcontrollers. Another option is to add an I2C serial eprom.

PIC microcontroller RAM and EEPROM size

The PIC microcontroller RAM size is also important as it stores all your variables and

intermediate

data.

Note: You can usually alter the program to use less RAM by choosing the right variable sizes

or

changing how your program works

For example don't use floating point alter it to use a different variable type e.g. you can use

long

integers with fixed point operation to avoid floating point.

PIC microcontroller EEROM : Electrically Erasable ROM is used to store data that must be

saved between power up and power down.

This area is readable and writable and has a much longer life than the main program store i.e.

it has

been designed for more frequent use.

QUESTIONS:

MULTIPLE CHOICE QUESTIONS:

1)which of following is PIC microcontroller:

P a g e | 12

 (a) XTAL 1 (b) RST 5.5

 (c) 16F88 (d)RST 7.5

2) which of following is a memory:

 (a)ALU (b) register

 (c) EPROM (d) all of these above

SHORT ANSWER TYPES QUESTIONS:

1) What is ADC?

2) WDT stands for ……………..

3) What do you mean by bus?

4) What is function of PSP?

5) Write all types of memory.

LONG ANSWER TYPES QUESTIONS:

 1) Explain in detail PIC microcontroller.

