NAME OF THE FACULTY

: RAVINDER KUMAR

DISCIPLINE : ECE

SEMESTER

SUBJECT

: 3rd : DIGITAL ELECTRONICS

LESSON PLAN DURATION

: - 15 weeks (from July- 2018 to Dec- 2018)

WORK LOAD (LECTURE/PRACTICAL) PER WEEK (IN HOURS):- LECTURE-03, PRACTIACL-03 PER GROUP

	THEORY			PRACTICAL			
WEEK	Lecture / Hrs	TOPIC (Including Assignment/Test)	Practical / Hrs		Experiment		
1 st	1	Introduction to Digital Electronics:		1	Verification and interpretation of truth tables for AND, OR, NOT NAND, NOR and Exclusive OR (EXOR) and Exclusive NOR(EXNOR) gates		
		Distinction between analog and digital signal.	Group-1	2			
	2	Applications and advantages of digital signals.		3			
			Group-2	1	Verification and interpretation of truth tables for AND, OR, NOT NAND, NOR and Exclusive OR (EXOR) and Exclusive NOR(EXNOR) gates		
	3	Number System: Binary, octal and hexadecimal number system		2			
				3			
	4	Conversion from decimal and hexadecimal to binary and vice-versa.	Group-1	1	Verification and interpretation		
2 nd				2	of truth tables for AND, OR,		
	5	Binary addition and subtraction including binary points. 1's and 2's complement method of addition/ subtraction		3	NOT NAND, NOR and Exclusive OR (EXOR) and Exclusive NOR(EXNOR) gates		
			Group-2	1	Verification and interpretation of truth tables for AND, OR, NOT NAND, NOR and Exclusive OR (EXOR) and Exclusive NOR(EXNOR) gates		
	6	Codes and Parity: Concept of code, weighted and non-weighted codes		2			
				3			
	7	Examples of 8421, BCD, excess-3 and Gray code	Group-1	1	Realisation of logic functions with the help of NAND or NOR		
				2			
3 rd	8	Concept of parity, single and double parity and error detection Logic Gates and Families: Concept of negative and positive logic.	Group-2 G	1	gates Realisation of logic functions with the help of NAND or NOR gates		
5				2			
				3			
4th	10	Definition, symbols and truth tables of NOT, AND, OR Gates	Group-1	1	To design a half adder using XOR and NAND gates and verification of its operation		
				2			
	11	Definition, symbols and truth tables of NAND, NOR, EXOR Gates Definition, symbols and truth tables of NAND and NOR as universal gates.	Group-2	3	· · ·		
				1	To design a half adder using		
				2	XOR and NAND gates and		
				3	verification of its operation		

5 th	13	Introduction to TTL and CMOS logic families	Group-1	1 2	Construction of a full adder circuit using XOR and NAND
	14	Assignment-1	Gro	3	gates and verify its operation
			-7	1	Construction of a full adder
	15	Sessional Test-1	Group-2	2	circuit using XOR and NAND
				3	gates and verify its operation
6 th	16 17 18	Logic Simplification: Postulates of Boolean algebra, De Morgan's TheoremsImplementation of Boolean (logic) equation with gatesKarnaugh map (upto 4 variables)Simple application in developing	Group-1	1	
				2	Revision Experiment Performed
				3 1	
			1p-2	2	
			Group-2	2	Revision Experiment Performed
				1	Verification of truth table for
	19	combinational logic circuits	-	2	positive edge triggered,
			Group-1		negative edge triggered, level
			Gro	3	triggered IC flip-flops (At least one IC each of D latch , D flip-
tb	20	Arithmetic circuits: Half adder and Full adder circuit			flop, JK flip-flops
7 th		adder circuit		1	Verification of truth table for
			-2	2	positive edge triggered,
	24	Half adder and Full adder circuit, design and implementation	Group-2	3	negative edge triggered, level triggered IC flip-flops (At least
	21				one IC each of D latch , D flip-
					flop, JK flip-flops
	22	Decoders, Multiplexeres, Multiplexeres	2 Group-1	1	Verification of truth table for
th	22	and Encoder: Introduction		2	encoder and decoder ICs, Mux
	23	Four bit decoder circuits for 7 segment display and decoder/driver ICs		3	and DeMux
8 th				1	
	24	Basic functions and block diagram of MUX and DEMUX with different ICs	Group-2	2	Verification of truth table for encoder and decoder ICs, Mux and DeMux
				3	
	25	Basic functions and block diagram of Encoder Latches and flip flops: Concept and	1	1	To design a 4 bit SISO, SIPO, PISO, PIPO shift registers using JK/D flip flops and verification of their operation
			Group-1	2	
			gr	3	
9 th	26	types of latch with their working and applications	Group-2	1	
5					To design a 4 bit SISO, SIPO,
	27	Operation using waveforms and truth tables of RS, T, D, Master/Slave JK flip flops.		2	PISO, PIPO shift registers using JK/D flip flops and verification
				3	of their operation
	28	Difference between a latch and a flip flop.		1	
10 th			Group-1	2	Revision Experiment Performed
	29	Assignment-2		3	
				1	
	30	Sessional Test-2	Group-2	2	Revision Experiment Performed
				3	

				τ.	T1
11 th	31	Counters: Introduction	Group-1	1	To design a 4 bit ring counter
				2	To design a 4 bit ring counter and verify its operation
	32	Introduction to Asynchronous counters Introduction to Synchronous counters	Ċ		
			5	1	
			Group-2	2	To design a 4 bit ring counter and verify its operation
				3	
				1	Use of Asynchronous Counter
	34	Binary counters	Group-1	2	- ICs (7490 or 7493)
				3	-
12^{th}	35 36	Divide by N ripple counters Decade counter, Ring counter	Group-2	3 1	
				2	Use of Asynchronous Counter
				3	ICs (7490 or 7493)
		Shift Register: Introduction and basic		3	
		concepts including shift left and shift			
	37	right. Serial in parallel out, serial in serial	Group-1	2	Revision Experiment Performed
13 th		out	Grot		
				3	-
	38	Parallel in serial out, parallel in parallel out. Universal shift register.		1	
	39	A/D and D/A Converters: Working principle of A/D and D/A converters, Stair step Ramp A/D converter, Dual Slope A/D converter.	Group-2	2	- Devision Experiment Derformed
				3	Revision Experiment Performed
				1	
	40	Successive Approximation A/D Converter, detail study of : Binary Weighted D/A converter, R/2R ladder D/A converter. Applications of A/D and D/A converter	Group-1	1 2	-
					Revision Experiment Performed
14 th	4.4	Semiconductor Memories: Memory organization, classification of Semiconductor memories	Group-2	3	
	41			1	
	42	(RAM, ROM, PROM, EPROM, EEPROM), static and dynamic RAM		2	Revision Experiment Performed
				3	
15 th	43	Introduction to 74181 ALU IC	Group-1	1	
				2	Revision Experiment Performed
	44	Assignment- 3	U	3	
)-2	1	
	45	Sessional Test- 3	Group-2	2	Revision Experiment Performed
				3	